Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive...Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable promising solution for their long-term irradiations. superhydrophobic surfaces provides a service under UV or strong solar light展开更多
In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is stud...In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.展开更多
基金Acknowledgements This work was supported by the Australian Research Council (ARC) Discovery Project No. DP1096546. ZQS was supported by an ARC Postdoctoral (APD) Research Fellowship and a University of Wollongong (UOW) Vice-chancellor's Research Fellowship. TL acknowledges the support of a University of Queensland (UQ) Postdoctoral Fellowship. KSL and LJ appreciate the financial support of the National Natural Science Foundation of China (Nos. 21273016, 21001013, and 20974113), the National Basic Research Program of China (No. 2013CB933003), the Program for New Century Excellent Talents in Universities, Beijing Natural Science Foundation (No. 2122035), and the Key Research Program of the Chinese Academy of Sciences (No. KJZDEW-M01).
文摘Superhydrophobic and superhydrophilic surfaces have been extensively inves- tigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable promising solution for their long-term irradiations. superhydrophobic surfaces provides a service under UV or strong solar light
基金supported by the National Natural Science Foundation of China (20275025 & 20675055)the Natural Science Foundation of Jiangsu Province (BK2009111)Technology Plan of Suzhou (SYJG0901)
文摘In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.