During the last decade, inflammation (carditis) and in- testinal metaplasia localized to immediately below the human gastro-oesophageal junction have received much attention in relation to the rising incidence of canc...During the last decade, inflammation (carditis) and in- testinal metaplasia localized to immediately below the human gastro-oesophageal junction have received much attention in relation to the rising incidence of cancer at this site. Since these histological findings are frequently observed even among those who are H pylori-negative, the causative factors for such histologic events at the human gastro-oesophageal junction remain obscure. A series of recent studies have demonstrated that a high level of salivary nitrite is sustained over several hours after the ingestion of a high nitrate meal, and that the nitrite in swallowed saliva is rapidly converted to nitric oxide by an acid catalyzed chemical reaction at the gastro-oesophageal junction. Eventually, a substantial amount of nitric oxide diffuses from the lumen into the adjacent tissue. Therefore, the human gastro-oesopha- geal junction is likely to be a region of high nitrosative stress. Considering the life-time exposure of the gastro- oesophageal junction to cytotoxic levels of nitric oxide, this may account for the high prevalence of inflamma- tion, intestinal metaplasia, and subsequent development of neoplasia at this site. Although gastric acid, pepsin, and bile acid have been intensively investigated as a cause of adenocarcinoma at the gastro-oesophageal junction and the distal esophagus, nitric oxide and the related nitrosative stress should also be examined.展开更多
文摘During the last decade, inflammation (carditis) and in- testinal metaplasia localized to immediately below the human gastro-oesophageal junction have received much attention in relation to the rising incidence of cancer at this site. Since these histological findings are frequently observed even among those who are H pylori-negative, the causative factors for such histologic events at the human gastro-oesophageal junction remain obscure. A series of recent studies have demonstrated that a high level of salivary nitrite is sustained over several hours after the ingestion of a high nitrate meal, and that the nitrite in swallowed saliva is rapidly converted to nitric oxide by an acid catalyzed chemical reaction at the gastro-oesophageal junction. Eventually, a substantial amount of nitric oxide diffuses from the lumen into the adjacent tissue. Therefore, the human gastro-oesopha- geal junction is likely to be a region of high nitrosative stress. Considering the life-time exposure of the gastro- oesophageal junction to cytotoxic levels of nitric oxide, this may account for the high prevalence of inflamma- tion, intestinal metaplasia, and subsequent development of neoplasia at this site. Although gastric acid, pepsin, and bile acid have been intensively investigated as a cause of adenocarcinoma at the gastro-oesophageal junction and the distal esophagus, nitric oxide and the related nitrosative stress should also be examined.