期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
澳大利亚北部格鲁特岛氧化锰豆状矿和鲕状矿的生物...
1
作者 Ostwa.,J 程席法 《国外地质科技》 1991年第7期28-36,共9页
关键词 鲕状矿 生物 地球化学
原文传递
鄂西难选铁矿的选矿与药剂研究新进展 被引量:14
2
作者 林祥辉 罗仁美 +3 位作者 刘靖 罗艾萍 林苑 黄俊 《矿冶工程》 CAS CSCD 北大核心 2007年第3期28-29,共2页
以RA-31作捕收剂,DA-18作絮凝剂,采用磁选-絮凝脱泥-反浮选流程对鄂西铁矿进行了闭路试验研究,获得铁精矿铁品位为56.29%,回收率为59.21%,含磷量为0.109%。这是目前国内(不采用还原焙烧提铁和浸出法除磷)选别该类矿石所能达到的较好选... 以RA-31作捕收剂,DA-18作絮凝剂,采用磁选-絮凝脱泥-反浮选流程对鄂西铁矿进行了闭路试验研究,获得铁精矿铁品位为56.29%,回收率为59.21%,含磷量为0.109%。这是目前国内(不采用还原焙烧提铁和浸出法除磷)选别该类矿石所能达到的较好选别指标。RD-31捕收剂和DA-18絮凝剂的研制成功使铁精矿降磷取得突破性进展。 展开更多
关键词 难选铁 鲕状矿 高磷铁 提铁降磷 浮选药剂
下载PDF
Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent 被引量:18
3
作者 徐承焱 孙体昌 +3 位作者 寇珏 李永利 莫晓兰 唐利刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2806-2812,共7页
High phosphorous oolitic hematite ore is one of typical intractable iron ores in China, and the conventional beneficiation methods are found to be impracticable to , remove phosphorus from the ore effectively. Better ... High phosphorous oolitic hematite ore is one of typical intractable iron ores in China, and the conventional beneficiation methods are found to be impracticable to , remove phosphorus from the ore effectively. Better beneficiation index were gotten by direct reduction roasting with dephosphorization agent followed by two stages of grinding and magnetic separation. P content decreases from 0.82% in the raw ore to 0.06% in the magnetic concentrate, and the total iron grade increases from 43.65% to 90.23%, the recovery of iron can reach 87%. Mechanisms of phosphorus removal in the beneficiation of high phosphorous oolitic hematite ore by direct reduction roasting with dephosphorization agent were studied using XRD, SEM and EPMA. The results showed that about 20% of the apatite in the raw ore transferred into phosphorus and volatilized with the gas in the process of reduction roasting, while the rest 80% apatite was not involved in the reaction of generation of phosphorus, and remained as apatite in the roasted products, which was removed to tailings by grinding and magnetic separation. A small amount of phosphorus existed in the magnetic concentrate as apatite. The oolitic texture of raw ore was partly changed during roasting, resulting in the formation of nepheline in the reaction between the dephosphorization agent, SiO2 and Al2O3 in the raw ore, which greatly improved the liberation degree of minerals in the roasted products, and it was beneficial to the subsequent grinding and magnetic separation. 展开更多
关键词 high phosphorous oolitic hematite direct reduction roasting phosphorus removal -dephosphorization agent GRINDING magnetic separation
下载PDF
Mechanism of microwave assisted suspension magnetization roasting of oolitic hematite ore 被引量:7
4
作者 ZHOU Wen-tao SUN Yong-sheng +2 位作者 HAN Yue-xin GAO Peng LI Yan-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期420-432,共13页
Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa... Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite. 展开更多
关键词 oolitic hematite MICROWAVE suspension magnetization roasting phase and magnetic transformation microstructure evolution
下载PDF
Synchronous enrichment of phosphorus and iron from a high-phosphorus oolitic hematite ore to prepare Fe-P alloy by direct reduction-magnetic separation process 被引量:3
5
作者 LI Si-wei PAN Jian +4 位作者 ZHU De-qing YANG Cong-cong GUO Zheng-qi DONG Tao LU Sheng-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2724-2734,共11页
In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower tempera... In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower temperatures and with absence of any of additives,Fe cannot be effectively recovered because of the oolitic structure is not destroyed.In contrast,under the conditions of 15%Na_(2)SO_(4)and reducing at 1050℃ for 120 min with a total C/Fe ratio(molar ratio)of 8.5,a final Fe-P alloy containing 92.40%Fe and 1.09%P can be obtained at an overall iron recovery of 95.43%and phosphorus recovery of 68.98%,respectively.This metallized Fe-P powder can be applied as the burden for production of weathering resistant steels.The developed process can provide an alternative for effective and green utilization of high phosphorus iron ore. 展开更多
关键词 high-phosphorus oolitic hematite ore direct reduction magnetic separation Fe-P alloy
下载PDF
Process mineralogy and characteristic associations of iron and phosphorus-based minerals on oolitic hematite 被引量:10
6
作者 罗立群 张汉泉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期1959-1967,共9页
The chemical compositions,mineralogical characteristics,as well as dissemination of iron-and phosphorus-based minerals were studied for the E’xi oolitic hematite from western Hubei Province in China by using chemical... The chemical compositions,mineralogical characteristics,as well as dissemination of iron-and phosphorus-based minerals were studied for the E’xi oolitic hematite from western Hubei Province in China by using chemical analysis,optical microscope,electron probe micro-analyzer(EPMA)and energy dispersive spectroscopy(EDS).It is found that this kind of oolitic hematite ore contains 47.71%TFe,10.96%SiO_2,as well as 0.874%P,with hematite as the dominant Fe-bearing minerals,and quartz,chamosite,illite and cellophane as main gangue minerals.The microscope examination showed that the ore has an oolitic structure,with some ooids principally formed by a series of concentric layers of hematite collophanite around nucleus that is hematite in the association with collophanite.Based on the EPMA and EDS analysis,it can be known that some ooids are primarily composed of hematite and collophanite.The separation can be achieved through fine grinding for those collophanite laminae with a higher P content.However,the dissemination of two minerals at the interface will result in the difficulty in effective separation.Besides,some ooids are made of chamosite with some nucleus formed of quartz,which is principally finely disseminated with hematite.In view of the close association and dissemination of iron-and phosphorus-based minerals in the ooids,it is found that the process of stage-grindings and stage-separations can be adopted to effectively increase the iron recovery and decrease the P content in the concentrate to some extent. 展开更多
关键词 oolitic hematite process mineralogy dissemination of iron- and phosphorus-based minerals electron probe micro-analyzer(EPMA) energy dispersive spectroscopy (EDS)
下载PDF
Effect of coal levels during direct reduction roasting of high phosphorus oolitic hematite ore in a tunnel kiln 被引量:24
7
作者 Li Yongli Sun Tichang Zou Anhua Xu Chengyan 《International Journal of Mining Science and Technology》 SCIE EI 2012年第3期323-328,共6页
The effect of coal levels on phosphorus removal from a high phosphorus oolitic hematite ore after direct reduction roasting have been investigated. Raw ore, coal, and a dephosphorizatiou agent were mixed and the mixtu... The effect of coal levels on phosphorus removal from a high phosphorus oolitic hematite ore after direct reduction roasting have been investigated. Raw ore, coal, and a dephosphorizatiou agent were mixed and the mixture was then roasted in a tunnel kiln. The roasted products were treated by two stages of grind- ing followed by magnetic separation. XRD and SEM-EDS examination of the products was used to analyze differences in the roasted products. The results show that coal is one of the most important factors affect- ing the direct reduction roasting process. When the inner coal levels increased from 0% to 15% the iron grade decreased linearly from 94.94%to 88.81% and the iron recovery increased from 55.94% to 92.94%. At the same time the phosphorus content increased from 0.045% to 0.231%. Increasing the inner coal levels also caused more hematite to be reduced to metallic iron but the oolitic structure of the roasted product was preserved in the presence of high coal loading. The phase of the phosphorus in raw ore was not changed after direct reduction roasting. The effect of coal on the phosphorus content in the H-concentrate arises from changes in the difficulty of mechanically liberating the metallic iron from the phosphorus bearing minerals. 展开更多
关键词 High phosphorus oolitic hematiteDirect reduction roastingRemoval phosphorusMagnetic separation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部