期刊文献+
共找到8,018篇文章
< 1 2 250 >
每页显示 20 50 100
改进鲸鱼算法优化支持向量机实现乳腺癌预测
1
作者 高涛 袁德成 《现代电子技术》 北大核心 2024年第11期156-160,共5页
为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优... 为了更好地通过人体肥胖的相关指数预测乳腺癌的存在,以抵抗素、葡萄糖、年龄和身体质量指数作为数据特征构造预测模型,通过研究支持向量机(SVM)的参数对模型的性能影响,提出一种基于自适应机制策略改进的鲸鱼算法,即参数自适应鲸鱼优化算法(PAWOA)用来寻找最优参数。采用Tent映射对种群位置初始化,引入自适应参数p^(*)代替随机阈值加速收敛速度,针对给定的目标函数对每个搜索个体进行求解,计算适应度后找到全局最优解,增强种群的全局寻优性能。实验结果表明,优化后的模型精确度提升12.44%,召回率提升13.57%,F_(1)评分提升13.14%。可见,该预测模型拥有更好的效果可以用于辅助判断乳腺癌。 展开更多
关键词 鲸鱼优化算法 支持向量 自适应参数 数据预处理 乳腺癌细胞分类 TENT映射
下载PDF
基于鲸鱼算法优化支持向量机的露天煤矿边坡稳定性预测 被引量:1
2
作者 曹念 孙华芬 +1 位作者 史朝阳 侯克鹏 《矿冶》 CAS 2023年第6期9-14,共6页
边坡的稳定性对露天矿山的安全影响重大,为了快速地对露天煤矿边坡稳定状态进行判断,提出了一种基于鲸鱼算法(WOA)优化支持向量机(SVM)的露天煤矿边坡稳定性预测模型。该方法使用WOA对SVM模型的惩罚系数及核函数参数的取值进行了优化,... 边坡的稳定性对露天矿山的安全影响重大,为了快速地对露天煤矿边坡稳定状态进行判断,提出了一种基于鲸鱼算法(WOA)优化支持向量机(SVM)的露天煤矿边坡稳定性预测模型。该方法使用WOA对SVM模型的惩罚系数及核函数参数的取值进行了优化,解决了SVM模型的初始参数值选取困难的缺点,利用WOA优化后的SVM模型对收集到的边坡数据进行预测,并与RF、BP、SVM模型的预测结果进行对比。结果表明,WOA优化后的SVM模型具有更高的预测精度,该模型对确定露天煤矿边坡稳定状态有一定的参考价值。 展开更多
关键词 露天煤矿 边坡稳定性 鲸鱼优化算法 支持向量
下载PDF
基于鲸鱼算法优化支持向量机的电机轴承故障诊断
3
作者 王权 《电气开关》 2023年第6期83-86,109,共5页
为了提高电机轴承故障诊断精度,提出了一种基于鲸鱼算法优化支持向量机的电机轴承故障诊断方法。采用WOA算法对SVM的惩罚参量和核参量进行优化,建立了基于WOA-SVM的电机轴承故障诊断模型。采用西储大学的1000组电机轴承故障数据集进行... 为了提高电机轴承故障诊断精度,提出了一种基于鲸鱼算法优化支持向量机的电机轴承故障诊断方法。采用WOA算法对SVM的惩罚参量和核参量进行优化,建立了基于WOA-SVM的电机轴承故障诊断模型。采用西储大学的1000组电机轴承故障数据集进行仿真分析,并与其他轴承故障诊断方法对比,结果表明,WOA-SVM电机轴承故障诊断模型诊断结果的准确率高达95.83%,诊断效果明显好于其他方法,验证了本文所提方法正确性和优越性。 展开更多
关键词 轴承 故障诊断 鲸鱼优化算法 支持向量
下载PDF
基于改进鲸鱼算法优化支持向量机的故障诊断的研究与应用 被引量:11
4
作者 李慧 徐海亮 +1 位作者 王浩 李佳男 《科学技术与工程》 北大核心 2022年第13期5284-5290,共7页
故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector mach... 故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector machine,IWOA-SVM),加入反向学习策略和对数权重因子到普通鲸鱼算法中。首先,用反向学习策略(opposition-based learning,OBL)代替随机初始种群,用反向学习策略选取出反向种群,对种群进行择优选择,一方面OBL能够高效地提高群智能算法的全局搜索能力,另一方面提高鲸鱼算法在重复迭代中的多样性,使其跳出局部最优解;其次,引入自适应权重因子并将其加入到鲸鱼优化算法中,利用权重因子的动态变化,很大程度上增强了全局搜索能力;最后,采用改进之后的鲸鱼算法对SVM的参数进行寻优,并利用优化之后的支持向量机对刮膜蒸发过程获得的故障数据进行诊断识别,将IWOA-SVM的结果与其他3种做对比。结果表明,IWOA-SVM算法分类准确率提升了2%,且其准确率保持在98%以上,在分类结果的准确性以及算法的鲁棒性方面优于其他算法。 展开更多
关键词 鲸鱼优化算法(WOA) 支持向量(SVM) 故障分类 反向学习(OBL) 自适应权重因子
下载PDF
基于麻雀算法优化支持向量机的NOx浓度预测
5
作者 宋美艳 刘畅 +1 位作者 张津 孙超 《计算机仿真》 2024年第7期129-134,289,共7页
煤炭作为火电厂发电的主要能源,其在锅炉内焚烧过程中会产生大量的氮氧化物。各电厂一般利用烟气自动监控系统对其浓度进行实时测量,但由于测量时存在较大迟延,不能准确地反映SCR系统NOx浓度的实时变化。因此提出了一种基于改进麻雀算... 煤炭作为火电厂发电的主要能源,其在锅炉内焚烧过程中会产生大量的氮氧化物。各电厂一般利用烟气自动监控系统对其浓度进行实时测量,但由于测量时存在较大迟延,不能准确地反映SCR系统NOx浓度的实时变化。因此提出了一种基于改进麻雀算法优化最小二乘支持向量机的NOX浓度预测方法。首先,引入余弦因子改进麻雀算法中的比例算子,将迭代次数信息引入到迭代过程中,平衡算法前后期的全局与局部搜索能力。其次,使用新的变异算子代替原算子,将混沌理论融合到麻雀算法,解决了算法全局搜索能力较差、初始化麻雀分布不稳定及发现者位置更新方式不足的问题。最后,采用改进麻雀算法(CDE-SSA)对最小二乘支持向量机(LSSVM)进行参数寻优。实验结果证明,方法在NOX浓度预测的精度和稳定性上均表现出了良好的性能。 展开更多
关键词 麻雀算法 最小二乘支持向量 氮氧化物浓度 火电 预测模型
下载PDF
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
6
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量 自适应 粒子群优化算法
下载PDF
基于支持向量机与蛇优化算法的氧化锆陶瓷磨削工艺参数优化
7
作者 陶其赫 马廉洁 +2 位作者 孙杨 王乐 李文博 《工具技术》 北大核心 2024年第5期84-88,共5页
为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多... 为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多元模型,并对模型进行验证。以温度、法向磨削力的多元数值模型作为目标函数,对温度和法向磨削力进行优化;基于蛇优化算法对工艺参数进行双目标优化,获得磨削工艺参数的最优解,验证实验结果表明,模型具有较高的精度,得到的最优工艺参数合理。 展开更多
关键词 支持向量 优化算法 参数优化 氧化锆陶瓷
下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
8
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量 遗传算法
下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测
9
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
下载PDF
基于鲸鱼优化算法-支持向量回归的汽车运动状态估计
10
作者 尤勇 孟云龙 +1 位作者 吴景涛 王长青 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期973-981,992,共10页
为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对... 为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对支持向量回归(SVR)模型进行多种行驶工况组成的数据集训练,在训练过程中运用鲸鱼优化算法对松弛变量中的惩罚因子c与核函数参数g进行寻优;最后对估计算法进行单移线、扫频试验虚拟仿真和实车ABS制动、双移线试验验证。结果表明,该算法有效提高了估计精度,且对车速的变化具有鲁棒性,可以实现准确的不依赖动力学模型精度的汽车运动状态估计。 展开更多
关键词 车辆状态估计 动力学模型 器学习 支持向量回归 鲸鱼优化算法
下载PDF
樽海鞘算法优化支持向量机的RC柱抗侧移承载力预测
11
作者 欧阳谦 骆欢 《地震研究》 CSCD 北大核心 2024年第3期350-358,共9页
现有钢筋混凝土(RC)柱抗侧移承载力预测模型缺乏泛化性能,延性柱抗弯承载力的预测模型不能用于非延性柱的抗剪承载力,反之亦然。机器学习(ML)方法能够解决这一问题,但由于无法自动剔除冗余和不相关特征,使得ML模型复杂度高且容易过拟合... 现有钢筋混凝土(RC)柱抗侧移承载力预测模型缺乏泛化性能,延性柱抗弯承载力的预测模型不能用于非延性柱的抗剪承载力,反之亦然。机器学习(ML)方法能够解决这一问题,但由于无法自动剔除冗余和不相关特征,使得ML模型复杂度高且容易过拟合。为此,提出一种樽海鞘算法优化支持向量机(SSALS-SVM)方法,基于给定的数据集,SSALS-SVM能利用樽海鞘优化算法(SSA)自动剔除冗余和不相关的特征,筛选最具代表性且各特征之间相关性弱的特征子集形成最优特征组合,同时对控制模型非线性拟合能力的超参数进行优化。优化后的模型既能识别出影响延性和非延性RC柱抗侧移承载力的设计变量,又能反映最优特征组合与抗侧移承载力间的非线性映射关系。为了验证SSALS-SVM方法的泛化性能,基于248个RC柱抗侧移承载力试验数据,分别与现有的RC柱抗侧移承载力预测模型进行对比,结果表明,SSALS-SVM比现有预测模型的泛化性能最高提升了83%。 展开更多
关键词 钢筋混凝土柱 抗侧移承载力 支持向量 樽海鞘优化算法 特征选择
下载PDF
基于遗传算法优化支持向量机的船舰目标识别分类
12
作者 杨永平 《舰船科学技术》 北大核心 2024年第4期174-178,共5页
为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算... 为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算法,优化支持向量机的惩罚因子与核参数;在参数优化后的支持向量机内,输入舰船目标特征矩样本,输出舰船目标识别分类结果。实验证明,该方法可有效提取舰船目标特征矩;经过参数优化后的支持向量机,可有效降低计算复杂度,加快检测目标识别分类效率,具备较优的舰船目标识别分类性能。该方法均可精准识别分类舰船目标。 展开更多
关键词 遗传算法 支持向量 舰船目标 识别分类 HU矩 特征描述子
下载PDF
基于灰狼算法优化支持向量机的变压器故障预测
13
作者 罗亭然 马成 卢银均 《安徽电气工程职业技术学院学报》 2024年第1期42-50,共9页
为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,... 为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。 展开更多
关键词 变压器 故障预测 支持向量 灰狼优化算法 特征气体
下载PDF
基于改进灰狼算法优化支持向量机的边坡位移预测
14
作者 刘晖 朱德康 +1 位作者 许凌杰 闫少霞 《自动化技术与应用》 2024年第9期30-33,171,共5页
为了提高边坡位移预测精度,采用帐篷映射和位置收敛参数变化方式调整两种对改进了灰狼算法,得到改进灰狼算法。采用改进灰狼算法对支持向量机进行优化,建立基于改进灰狼算法优化支持向量机的边坡位移预测模型,采用实际水利工程边坡位移... 为了提高边坡位移预测精度,采用帐篷映射和位置收敛参数变化方式调整两种对改进了灰狼算法,得到改进灰狼算法。采用改进灰狼算法对支持向量机进行优化,建立基于改进灰狼算法优化支持向量机的边坡位移预测模型,采用实际水利工程边坡位移数据进行仿真分析,IGWO-SVM模型的平均相对百分误差和均方根误差分别为2.41%和0.21,预测效果优于PSO-BP模型,验证了该模型在边坡位移预测方面的实用性和优越性。 展开更多
关键词 边坡位移 预测 改进灰狼算法 支持向量
下载PDF
基于改进人工蜂群算法优化支持向量机的设备故障诊断方法
15
作者 巩世勇 《山西焦煤科技》 CAS 2024年第6期4-7,共4页
为了对煤矿井下带式输送机的核心部件滚动轴承的运行状态进行精确诊断,针对故障分类方法中支持向量机存在的惩罚因子确定困难的问题,引入交叉操作和全局最优解结合的改进人工蜂群算法,构建了故障诊断模型,通过仿真分析对比了改进模型与... 为了对煤矿井下带式输送机的核心部件滚动轴承的运行状态进行精确诊断,针对故障分类方法中支持向量机存在的惩罚因子确定困难的问题,引入交叉操作和全局最优解结合的改进人工蜂群算法,构建了故障诊断模型,通过仿真分析对比了改进模型与传统模型之间的差异性,仿真结果表明,改进的诊断模型能够快速精准地识别设备故障的类型,缩短了设备故障的诊断时间,提高了井下设备故障诊断的工作效率。 展开更多
关键词 皮带输送 轴承故障诊断 支持向量 人工蜂群算法 交叉操作 全局最优理念
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:3
16
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
下载PDF
基于改进乌鸦搜索算法优化支持向量机的变压器故障检测方法
17
作者 王龙昌 《电子产品世界》 2024年第4期57-60,共4页
变压器是变电站的关键设备,也是变电站运维的重要方向之一。因此,提出了一种基于改进乌鸦搜索算法优化支持向量机(support vector machine,SVM)的变压器故障检测方法。针对传统支持向量机在变压器故障检测中参数选择困难的问题,利用改... 变压器是变电站的关键设备,也是变电站运维的重要方向之一。因此,提出了一种基于改进乌鸦搜索算法优化支持向量机(support vector machine,SVM)的变压器故障检测方法。针对传统支持向量机在变压器故障检测中参数选择困难的问题,利用改进的乌鸦搜索算法对SVM的核函数参数和惩罚因子进行优化,提高了故障检测的准确率。实验结果表明,该方法对变压器故障诊断的准确率达到85.11%,高于传统SVM方法。 展开更多
关键词 乌鸦搜索算法 支持向量 变压器 故障检测
下载PDF
基于樽海鞘算法优化支持向量机的连续梁桥损伤识别
18
作者 黄学漾 《福建建设科技》 2024年第4期100-104,共5页
为了能够更加准确、高效地判断桥梁结构损伤位置和程度,本文提出了基于樽海鞘群优化支持向量机(SSA-SVM)方法进行连续梁桥损伤识别的方法。该方法以敏感性较高的曲率模态差作为损伤识别指标,利用樽海鞘群(SSA)算法寻找支持向量机(SVM)... 为了能够更加准确、高效地判断桥梁结构损伤位置和程度,本文提出了基于樽海鞘群优化支持向量机(SSA-SVM)方法进行连续梁桥损伤识别的方法。该方法以敏感性较高的曲率模态差作为损伤识别指标,利用樽海鞘群(SSA)算法寻找支持向量机(SVM)最优参数,建立SVM预测模型,通过建立一座三跨连续梁桥有限元模型,以桥梁易损区域作为损伤识别对象进行数值模拟。结果表明:以曲率模态差作为损伤识别指标,能够有效地识别并定位单点或多点的损伤状况,同时准确评估损伤的严重程度。与传统SVM模型比较,SSA-SVM模型实现了参数的自动优化,同时也拥有了更为精准的预测能力。 展开更多
关键词 连续梁桥 损伤识别 支持向量 樽海鞘算法 曲率模态
下载PDF
基于支持向量机和蚁群算法的热电联产电力接线网络优化方法
19
作者 孟金英 赵晨阳 《区域供热》 2024年第4期32-38,共7页
为更好地满足不同用户的能源需求,创造更多经济效益,提出一种基于支持向量机和蚁群算法的热电联产电力接线网络优化方法。计算电力产热产电比,以燃料成本、网络损耗最小化为目标,创建热电联产电力接线网络模型;考虑日分类、星期分类、... 为更好地满足不同用户的能源需求,创造更多经济效益,提出一种基于支持向量机和蚁群算法的热电联产电力接线网络优化方法。计算电力产热产电比,以燃料成本、网络损耗最小化为目标,创建热电联产电力接线网络模型;考虑日分类、星期分类、天气分类等元素,使用近大远小原理选择电力数据样本,采用支持向量机预测热电联产电力负荷;运用蚁群算法寻找电力接线网络最优配置方案,利用轮盘赌机制挑选最优路径,引入物元分析中的距离和关联函数概念,设支路中的关联函数值大于0为较优支路,完成热电联产电力接线网络优化计算。实验结果证明,所提方法在多个测试案例中均取得良好的优化效果,实现了能源高效利用,具有重要的实际应用价值。 展开更多
关键词 支持向量 蚁群算法 热电联产 电力接线网络 负荷预测
下载PDF
基于支持向量机回归算法的盾构下穿市政管线参数优化研究
20
作者 王非 韩凯杰 +2 位作者 余鑫 金平 许卓淋 《广东土木与建筑》 2024年第5期65-67,共3页
随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持... 随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持向量机回归(SVMR)算法的机器学习模型,并通过优化算法反向求解得到了符合施工要求的盾构参数优化方案。研究结果表明,方法的有效性通过了数值模拟试验和工程实践的验证,能够基于已有的少量盾构参数,针对关键掘进参数如推力、刀盘转速等进行优化,并提出最优组合方案,以确保施工的安全与高效,可为类似工程提供参考。 展开更多
关键词 盾构下穿管线 支持向量回归 反向求解 掘进参数优化
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部