期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的循环水养殖鳗鲡(Anguilla)计数研究 被引量:1
1
作者 李凯 江兴龙 +3 位作者 陈尔康 陈彭 许志扬 林茜 《海洋与湖沼》 CAS CSCD 北大核心 2022年第3期664-674,共11页
鳗鲡(Anguilla)作为我国优质水产养殖种类,精准掌握其数量对高效养殖有重要意义。为实现对循环水养殖鳗鲡的准确计数,提出了一种基于深度学习的改进Faster RCNN模型。针对检测目标即鳗鲡头部尺寸小的问题,选择在特征提取网络ResNet50中... 鳗鲡(Anguilla)作为我国优质水产养殖种类,精准掌握其数量对高效养殖有重要意义。为实现对循环水养殖鳗鲡的准确计数,提出了一种基于深度学习的改进Faster RCNN模型。针对检测目标即鳗鲡头部尺寸小的问题,选择在特征提取网络ResNet50中加入FPN结构来作为模型的骨干网络,以提取并融合多尺度的特征;针对原模型锚框都是基于人工经验设置的,并不适用于鳗鲡数据集的问题,使用k-means聚类算法对训练集中标注的鳗鲡头部检测框进行聚类分析,获得了适合鳗鲡数据集的15种不同尺度的锚框;针对图像中存在鳗鲡头部重叠的问题,选择使用Soft-NMS算法替代原NMS算法对RPN部分生成的候选框进行筛选,以减少模型对鳗鲡重叠部分的漏检情况。试验结果表明:改进后的Faster RCNN模型对鳗鲡头部的检测精度(mAP^(0.5))高达96.5%,较原Faster RCNN模型(Backbone为ResNet50)显著提升了14%,与SSD300和YOLOV3模型相比分别显著提升了24.9%和15%;在鳗鲡计数上,利用改进后的Faster RCNN模型检测结果进行计数,计数准确率达到90%以上,提升了模型对鳗鲡的检测识别能力。 展开更多
关键词 鳗鲡计数 深度学习 Faster RCNN模型 FPN结构 K-MEANS聚类算法 Soft-NMS算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部