In nature hummingbirds face floral resources whose availability, quality and quantity can vary spatially and temporally. Thus, they must constantly make foraging decisions about which patches, plants and flowers to vi...In nature hummingbirds face floral resources whose availability, quality and quantity can vary spatially and temporally. Thus, they must constantly make foraging decisions about which patches, plants and flowers to visit, partly as a function of the nectar reward. The uncertainty of these decisions would possibly be reduced if an individual could remember locations or use visual cues to avoid revisiting recently depleted flowers. In the present study, we carried out field experiments with white-eared hummingbirds Hylocharis leucotis, to evaluate their use of locations or visual cues when foraging on natural flowers Penstemon roseus. We evaluated the use of spatial memory by observing birds while they were foraging between two plants and within a single plant. Our results showed that hummingbirds prefer to use location when foraging in two plants, but they also use visual cues to efficiently locate unvisited rewarded flowers when they feed on a single plant. However, in absence of visual cues, in both experiments birds mainly used the location of previously visited flowers to make subsequent visits. Our data suggest that hummingbirds are capable of learning and employing this flexibility depending on the faced environmental conditions and the information acquired in previous visits [Current Zoology 57 (4): 468-476, 2011].展开更多
Many invasive species exploit anthropogenically disturbed habitats, but most of those taxa evolved long before humans. Presumably, then, an ability to use natural (non-anthropogenic) disturbances pre-adapted invader...Many invasive species exploit anthropogenically disturbed habitats, but most of those taxa evolved long before humans. Presumably, then, an ability to use natural (non-anthropogenic) disturbances pre-adapted invaders to a world later degraded by people. Studies on invasive species in naturally disturbed habitats thus can clarify the ancestral niche of invaders. In the Australian tropics, metallic starlings Aplonis metallica nest communally in emergent rainforest trees during the wet-season, and invasive cane toads Rhinella marina join other predators (mammals, birds, reptiles, and other anurans) to exploit the food resources beneath those trees. Compared to conspecifics found along nearby roads through the forest, cane toads beneath bird-nesting trees occur at higher densities, and are smaller in body size. The sex ratio is female-biased, and recapture records suggest that fe- males may be philopatric at these sites (whereas recaptures were rare for both sexes found along the roads). Some toads were found under the same trees in successive wet-seasons. Spooling showed that distances moved per night were similar along the road versus under the trees, but toads under trees showed lower net displacements. Diets also differed (based upon scat analysis), with tree toads feeding more on beetles and less on ants. These nutrient-rich hotspots are ex- ploited primarily by adult females and juvenile toads, whereas adult males congregate at breeding sites. By magnifying pre-existing intraspecific divergences in habitat use, bird rookeries may en- hance population viability of cane toads by enabling critical age and sex classes to exploit food- rich patches that are rarely used by adult males.展开更多
文摘In nature hummingbirds face floral resources whose availability, quality and quantity can vary spatially and temporally. Thus, they must constantly make foraging decisions about which patches, plants and flowers to visit, partly as a function of the nectar reward. The uncertainty of these decisions would possibly be reduced if an individual could remember locations or use visual cues to avoid revisiting recently depleted flowers. In the present study, we carried out field experiments with white-eared hummingbirds Hylocharis leucotis, to evaluate their use of locations or visual cues when foraging on natural flowers Penstemon roseus. We evaluated the use of spatial memory by observing birds while they were foraging between two plants and within a single plant. Our results showed that hummingbirds prefer to use location when foraging in two plants, but they also use visual cues to efficiently locate unvisited rewarded flowers when they feed on a single plant. However, in absence of visual cues, in both experiments birds mainly used the location of previously visited flowers to make subsequent visits. Our data suggest that hummingbirds are capable of learning and employing this flexibility depending on the faced environmental conditions and the information acquired in previous visits [Current Zoology 57 (4): 468-476, 2011].
文摘Many invasive species exploit anthropogenically disturbed habitats, but most of those taxa evolved long before humans. Presumably, then, an ability to use natural (non-anthropogenic) disturbances pre-adapted invaders to a world later degraded by people. Studies on invasive species in naturally disturbed habitats thus can clarify the ancestral niche of invaders. In the Australian tropics, metallic starlings Aplonis metallica nest communally in emergent rainforest trees during the wet-season, and invasive cane toads Rhinella marina join other predators (mammals, birds, reptiles, and other anurans) to exploit the food resources beneath those trees. Compared to conspecifics found along nearby roads through the forest, cane toads beneath bird-nesting trees occur at higher densities, and are smaller in body size. The sex ratio is female-biased, and recapture records suggest that fe- males may be philopatric at these sites (whereas recaptures were rare for both sexes found along the roads). Some toads were found under the same trees in successive wet-seasons. Spooling showed that distances moved per night were similar along the road versus under the trees, but toads under trees showed lower net displacements. Diets also differed (based upon scat analysis), with tree toads feeding more on beetles and less on ants. These nutrient-rich hotspots are ex- ploited primarily by adult females and juvenile toads, whereas adult males congregate at breeding sites. By magnifying pre-existing intraspecific divergences in habitat use, bird rookeries may en- hance population viability of cane toads by enabling critical age and sex classes to exploit food- rich patches that are rarely used by adult males.