Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a no...Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments(MoM) with finite-difference time-domain(FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples.展开更多
基金Supported in part by China Postdoctoral Science Foundation under Grant No.201M550839in part by the Key Research Program of the Chinese Academy of Sciences under Grant No.KGZD-EW-603
文摘Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments(MoM) with finite-difference time-domain(FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples.