文章证明了麦克斯韦方程组在非均匀、各向异性介质中的解的唯一性,其中假设了方程的系数矩阵函数为利普西斯连续并满足有关正定性条件。该结论与笔者在On uniqueness for time harmonicanisotropic Maxwell's Equations with piecew...文章证明了麦克斯韦方程组在非均匀、各向异性介质中的解的唯一性,其中假设了方程的系数矩阵函数为利普西斯连续并满足有关正定性条件。该结论与笔者在On uniqueness for time harmonicanisotropic Maxwell's Equations with piecewise regular coefficients一文中提出的方程系数在分段正则情况下麦克斯韦方程组解的唯一性的结论不具有相互依赖性,各自具有独立的系数条件。展开更多
We investigate the zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system.We justify this singular limit rigorously in the framework of smooth solutions and obtain the nonisentropic com...We investigate the zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system.We justify this singular limit rigorously in the framework of smooth solutions and obtain the nonisentropic compressible magnetohydrodynamic equations as the dielectric constant tends to zero.展开更多
文摘文章证明了麦克斯韦方程组在非均匀、各向异性介质中的解的唯一性,其中假设了方程的系数矩阵函数为利普西斯连续并满足有关正定性条件。该结论与笔者在On uniqueness for time harmonicanisotropic Maxwell's Equations with piecewise regular coefficients一文中提出的方程系数在分段正则情况下麦克斯韦方程组解的唯一性的结论不具有相互依赖性,各自具有独立的系数条件。
基金supported by National Basic Research Program of China (Grant No. 2011CB309705)National Natural Science Foundation of China (Grant Nos. 11229101, 11371065 and 11271184)+2 种基金Program for New Century Excellent Talents in University (Grant No. 110227)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities
文摘We investigate the zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system.We justify this singular limit rigorously in the framework of smooth solutions and obtain the nonisentropic compressible magnetohydrodynamic equations as the dielectric constant tends to zero.