A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were d...A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.展开更多
Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 ...Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 gliadin and 3 high_molecular_weight (HMW)_glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW_glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW_glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu_D1. Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli_1 locus; 11, 14 and 12 alleles at Gli_2 locus; and 5, 6 and 8 alleles at Glu_1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.展开更多
[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer...[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.展开更多
The new wheat varieties with more than 6.67x104 hm2 of planting area in Henan Province during 2007-2017 were analyzed. The results showed that in the past eleven years, there were total 43 varieties from 23 breeding u...The new wheat varieties with more than 6.67x104 hm2 of planting area in Henan Province during 2007-2017 were analyzed. The results showed that in the past eleven years, there were total 43 varieties from 23 breeding units of which the annual planting areas were more than 6.67x104 hm2. Among them, the annual planting areas of 13 varieties from 7 breeding units exceeded 3.33x10 hm2. The total cultivation area of 43 wheat varieties accounted for about 80% of the total wheat cultivation area in Henan in that year. Most of the varieties come from provincial universities and research institutes and municipal agricultural academies, Zhengmai 9023 was the spring wheat variety that had the largest annual and accu- mulated cultivation area, and Aikang 58 was the semi-winter wheat cultivar with the largest annual and accumulated planting area. Semi-winter varieties were the domi- nator. Among the wheat varieties planted in large area in Henan Province, medium- gluten and state-approved varieties are dominant; and provincial and municipal academies are the breeders of the major wheat cultivars in Henan.展开更多
[Objective] The present study was conducted to provide basis for researches on breeding new wheat varieties and conserving rare species in Yunnan Province.[Method] 29 materials of Triticum aestivum ssp.yunnanense King...[Objective] The present study was conducted to provide basis for researches on breeding new wheat varieties and conserving rare species in Yunnan Province.[Method] 29 materials of Triticum aestivum ssp.yunnanense King(Yunnan Hulled Wheat)were taken for the research on classification and genetic diversity analysis based on 14 agronomic traits.[Result] Yunnan hulled wheat A14 could be an unnamed white seed variety,and other 28 materials were divided into 10 named mutation types;Yunnan hulled wheat was rich in variability of agronomic traits,in which the coefficient of variance(CV)of sterile spikelet number was the largest(22.59%),while the CV of earing period was the lowest(3.71%);the diversity indexes of seven qualitative characters ranged from 1.55-2.04.Moreover,the 29 Yunnan hulled wheat could be divided into 3 clusters by the UPGMA analysis.However,Yunnan hulled wheat varieties originating from similar mutation types did not completely cluster together.The genetic relationship was relatively close among A13(YT-35),A14(YT-36)and A21(YT-37),but the faster genetic relationship was observed between them and other Yunnan hulled wheat varieties.[Conclusion] Yunnan hulled wheat had an extensive genetic diversity in agronomic traits.展开更多
Xinan 112 is the hybrid combination(11S12) by wheat recessive genic male sterility line 2011Z1 (08L5070) and restoring line K152-2, particpating in the regional test of 2011-2012, 2012-2013 and production test of ...Xinan 112 is the hybrid combination(11S12) by wheat recessive genic male sterility line 2011Z1 (08L5070) and restoring line K152-2, particpating in the regional test of 2011-2012, 2012-2013 and production test of 2013-2014 in Chongqing. The results showed that 3 years average yield was 4 167.5 kg/hm2, which was increased 10.5% compared with CK Yumai 7, 1 000-grain weight was 45.8 g, which was 1.7 g heavier than the control; grain number per ear was 39.3, more than 1.6 grains compared with CK. The results of 2 years quality determination were: bulk density of 811 g/L, falling number of 353 s, crude protein of 15.15%, wet gluten of 31.2%, water adsorption of 62.9 ml/100 g, formation time of 5.5 min, stable time of 6.5 min, softening degree of 90 F.U., and powder quality coefficient of 96 mm. Therefore, Xinan 112 is a high yield and high protein gluten wheat variety and is suitable for cultivated in Chongqing and climate contion similar areas.展开更多
Daily and ten-day Normalized Difference Vegetation Index( NDVI) of crops were retrieved from meteorological satellite NOAA AVHRR images. The temporal variations of the NDVI were analyzed during the whole growing seaso...Daily and ten-day Normalized Difference Vegetation Index( NDVI) of crops were retrieved from meteorological satellite NOAA AVHRR images. The temporal variations of the NDVI were analyzed during the whole growing season, and thus the principle of the interaction between NDVI profile and the growing status of crops was discussed. As a case in point, the relationship between integral NDVI and winter wheat yield of Henan Province in 1999 had been analyzed. By putting integral NDVI values of 60 sample counties into the winter wheat yield-integral NDVI coordination, scattering map was plotted. It demonstrated that integral NDVI had a close relation with winter wheat yield. These relation could be described with linear, cubic polynomial, and exponential regression, and the cubic polynomial regression was the best way. In general, NDVI reflects growing status of green vegetation, so crop monitoring and crop yield estimation could be realized by using remote sensing technique on the basis of time serial NDVI data together with agriculture calendars.展开更多
A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Based on the results of the 5-consecutive-year experiments,a reasonab...A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Based on the results of the 5-consecutive-year experiments,a reasonable irrigation model for wheat cultivation is suggested according to the principle of maintaining balance of the water resources. The irrigation program was designed by simulating the ideal soil moisture regimes during a wheat season. As far as the actual soil moisture was concerned, its deyiation from the ideal soil moisture was kept within 150 mm. If this model was put into practice, a grain yield of 5 250 kg ha-1 could be expected under optimal fertilization. Compared with the traditional irrigstion scheme, the suggested model saved irrigation water by 18%.展开更多
A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat y...A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat yield and water consumption was not significant, but that between wheat yield and the ratio of water supply to Penman evaporation was significant, following a parabolic curve. The water consumption process,as well as the growing season of wheat plant, could be divided into three periods. The first (154 days) was vegetative growth period, during which the water consumption accounted for 35% of the total; the second (65 days) reproductive growth period, during which the water consumption occupied 57%, indicating the importance of water consumption in this period; and the third (5~9 days) maturation period, during which water supply was not important to yield formation. According to the statistics of meteorological data over the years in this region, the hydrological conditions of the five seasons covered a probability range of 74.8%.The results (3.46~5.63 t ha-1) indicated that the productivity of the wheat field under rainfed conditions in this region had a degree of confidence of 74.8%.展开更多
A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on wa...A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on water use efficiency of upland wheat showed that the input of inorganic fertilizer should be reduced in dry years.展开更多
The essential factor that affects wheat production is variety. The paper reviews the history of fifty seven years since establishment of China about evolution of wheat variety in Henan and divides it into four periods...The essential factor that affects wheat production is variety. The paper reviews the history of fifty seven years since establishment of China about evolution of wheat variety in Henan and divides it into four periods according to historical background and nine generations in terms of developing trend of wheat variety evolution. The analysis on characteristics and influence of wheat variety evolution to wheat production indicates the regulation and contribution of wheat variety evolution, which provides reference for breeding, extending and updating of wheat variety in Henan.展开更多
The bread-making quality of wheat is a highly complex trait that depends on both genetic and environmental factors. This study aims at evaluating the effects of different rates, time and splitting of nitrogen fertiliz...The bread-making quality of wheat is a highly complex trait that depends on both genetic and environmental factors. This study aims at evaluating the effects of different rates, time and splitting of nitrogen fertilization on the technological quality of wheat cultivated in the Brazilian Southern region. The samples of bread wheat (Triticum aestivum L.), Onix, Quartzo and Mirante cultivars, were obtained through the use of nitrogen (N) fertilizer applied in doses of 36, 100 and 120 kg N ha1 at sowing, tillering and flowering. Laboratorial tests were carried out in a completely randomized design with four repetitions. The parameters analyzed were: grain yield, total protein, protein fractions, gliadins, glutenins, albumins and globulins, sulfur, gluten strength (W), dough tenacity (P), extensibility (L) and stability (S), bread specific volume and bread firmness. While the content of total and reserve proteins is significantly increased with a higher rate and splitting of N, the content of metabolic proteins remains constant. A mean increase in the quality parameters W (24.37%), L (14.86%) and P (11.59%) among cultivars was noticed after application of 120 kg N ha1, split at sowing, tillering and flowering. Bread specific volume increased, while bread firmness decreased with a higher rate of N fertilizer. Wheat fertilization with high doses of N does not cause induction to S deficiency in the grains. Not only increasing the N fertilization rate, but also splitting the N rate had a beneficial effect on the technological quality of wheat.展开更多
Sowing time of wheat in south eastern Australia varies from autumn to early winter, depending on the seasonal 'break'. Wheat yields are often reduced by frost damage at flowering time and by heat-and/or water-stress...Sowing time of wheat in south eastern Australia varies from autumn to early winter, depending on the seasonal 'break'. Wheat yields are often reduced by frost damage at flowering time and by heat-and/or water-stress during grain filling. Selecting suitable varieties for specific sowing times is a complex decision farmers make because these varietal phenology and climate risks have to be assessed together. In order to help farmers make decisions, they need tools that simulate and analyse agronomically-suitable sowing dates (ASSD) for a given variety of wheat. The hypothesis underlining this study is the integration of a wheat phenology model with historical climate data is an effective approach to modelling the ASSD of current varieties used in the wheat growing areas of Southern NSW. The parameters of the wheat phenology model were based on data from five years of field experimentation across 15 sites. Data from four sites were used to examine varietal suitability in relation to sowing time and its associated risks of frost and heat damage. The optimum ASSD for any variety at 72 locations across Southern NSW was investigated. The results showed that there were substantial spatial variations in the ASSD across the target region. ASSD for a late maturing wheat genotype (EGA Gregory) can range from early March to late April, while the earliest acceptable sowing date for an early maturing spring wheat genotype (H46) can range from early to late May. The wide range of spatial variation in the earliest and latest sowing dates, as well as the varied length of sowing opportunities, highlighted the importance of being able to apply a modelling approach which can integrate information on crop phenology with climate risk for a given location. This approach would allow better decision-making on suitable varieties and sowing dates in order to minimise the risk of frost and heat damage affecting crop yield.展开更多
The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic n...The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.展开更多
基金Hi-Tech Research and Development (863) Program of China (No. 2006AA10Z1F6)Hi-Tech Re-search of Jiangsu Province (No.BG2005310)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No.10418) (PCSIRT)Innovation Foundation of Young Science and Technology of Nanjing Agriculture UniversityIntroduction of Talents Foundation of Nanjing Agriculture University.
文摘A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.
文摘Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 gliadin and 3 high_molecular_weight (HMW)_glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW_glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW_glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu_D1. Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli_1 locus; 11, 14 and 12 alleles at Gli_2 locus; and 5, 6 and 8 alleles at Glu_1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.
基金Supported by Key Project of National Scientific and Technological Support Plan (2006BAD02A07)Key Grant Scientific and Technolog-ical Project of Henan Province (0522010100)Scientific Research Foundation for Doctor of Henan Agricultural University (30200240)~~
文摘[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.
文摘The new wheat varieties with more than 6.67x104 hm2 of planting area in Henan Province during 2007-2017 were analyzed. The results showed that in the past eleven years, there were total 43 varieties from 23 breeding units of which the annual planting areas were more than 6.67x104 hm2. Among them, the annual planting areas of 13 varieties from 7 breeding units exceeded 3.33x10 hm2. The total cultivation area of 43 wheat varieties accounted for about 80% of the total wheat cultivation area in Henan in that year. Most of the varieties come from provincial universities and research institutes and municipal agricultural academies, Zhengmai 9023 was the spring wheat variety that had the largest annual and accu- mulated cultivation area, and Aikang 58 was the semi-winter wheat cultivar with the largest annual and accumulated planting area. Semi-winter varieties were the domi- nator. Among the wheat varieties planted in large area in Henan Province, medium- gluten and state-approved varieties are dominant; and provincial and municipal academies are the breeders of the major wheat cultivars in Henan.
基金Supported by the Key Programs of Yunnan Province(2008CD010)the National Natural Science Foundation of China(30760119)Yunnan Provincial Science and Technology of Wheat UQECProgram(2010BB005)~~
文摘[Objective] The present study was conducted to provide basis for researches on breeding new wheat varieties and conserving rare species in Yunnan Province.[Method] 29 materials of Triticum aestivum ssp.yunnanense King(Yunnan Hulled Wheat)were taken for the research on classification and genetic diversity analysis based on 14 agronomic traits.[Result] Yunnan hulled wheat A14 could be an unnamed white seed variety,and other 28 materials were divided into 10 named mutation types;Yunnan hulled wheat was rich in variability of agronomic traits,in which the coefficient of variance(CV)of sterile spikelet number was the largest(22.59%),while the CV of earing period was the lowest(3.71%);the diversity indexes of seven qualitative characters ranged from 1.55-2.04.Moreover,the 29 Yunnan hulled wheat could be divided into 3 clusters by the UPGMA analysis.However,Yunnan hulled wheat varieties originating from similar mutation types did not completely cluster together.The genetic relationship was relatively close among A13(YT-35),A14(YT-36)and A21(YT-37),but the faster genetic relationship was observed between them and other Yunnan hulled wheat varieties.[Conclusion] Yunnan hulled wheat had an extensive genetic diversity in agronomic traits.
基金Supported by the Major Project for Application in Chongqing(cstc2013yylf B80012)the Fundamental Research Funds for the Central Universities(XDJK2016A020)~~
文摘Xinan 112 is the hybrid combination(11S12) by wheat recessive genic male sterility line 2011Z1 (08L5070) and restoring line K152-2, particpating in the regional test of 2011-2012, 2012-2013 and production test of 2013-2014 in Chongqing. The results showed that 3 years average yield was 4 167.5 kg/hm2, which was increased 10.5% compared with CK Yumai 7, 1 000-grain weight was 45.8 g, which was 1.7 g heavier than the control; grain number per ear was 39.3, more than 1.6 grains compared with CK. The results of 2 years quality determination were: bulk density of 811 g/L, falling number of 353 s, crude protein of 15.15%, wet gluten of 31.2%, water adsorption of 62.9 ml/100 g, formation time of 5.5 min, stable time of 6.5 min, softening degree of 90 F.U., and powder quality coefficient of 96 mm. Therefore, Xinan 112 is a high yield and high protein gluten wheat variety and is suitable for cultivated in Chongqing and climate contion similar areas.
基金Under the auspices of Beijing Precision Agriculture Project of the State Development Planning Commission(A00300100584-RS02).
文摘Daily and ten-day Normalized Difference Vegetation Index( NDVI) of crops were retrieved from meteorological satellite NOAA AVHRR images. The temporal variations of the NDVI were analyzed during the whole growing season, and thus the principle of the interaction between NDVI profile and the growing status of crops was discussed. As a case in point, the relationship between integral NDVI and winter wheat yield of Henan Province in 1999 had been analyzed. By putting integral NDVI values of 60 sample counties into the winter wheat yield-integral NDVI coordination, scattering map was plotted. It demonstrated that integral NDVI had a close relation with winter wheat yield. These relation could be described with linear, cubic polynomial, and exponential regression, and the cubic polynomial regression was the best way. In general, NDVI reflects growing status of green vegetation, so crop monitoring and crop yield estimation could be realized by using remote sensing technique on the basis of time serial NDVI data together with agriculture calendars.
文摘A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Based on the results of the 5-consecutive-year experiments,a reasonable irrigation model for wheat cultivation is suggested according to the principle of maintaining balance of the water resources. The irrigation program was designed by simulating the ideal soil moisture regimes during a wheat season. As far as the actual soil moisture was concerned, its deyiation from the ideal soil moisture was kept within 150 mm. If this model was put into practice, a grain yield of 5 250 kg ha-1 could be expected under optimal fertilization. Compared with the traditional irrigstion scheme, the suggested model saved irrigation water by 18%.
文摘A 5-year experiment on water balance was conducted in a flat rainfed wheat field with an area of 66 m×100 m in Fengqiu, Henan Province, China. Results of the experiment showed that the correlation between wheat yield and water consumption was not significant, but that between wheat yield and the ratio of water supply to Penman evaporation was significant, following a parabolic curve. The water consumption process,as well as the growing season of wheat plant, could be divided into three periods. The first (154 days) was vegetative growth period, during which the water consumption accounted for 35% of the total; the second (65 days) reproductive growth period, during which the water consumption occupied 57%, indicating the importance of water consumption in this period; and the third (5~9 days) maturation period, during which water supply was not important to yield formation. According to the statistics of meteorological data over the years in this region, the hydrological conditions of the five seasons covered a probability range of 74.8%.The results (3.46~5.63 t ha-1) indicated that the productivity of the wheat field under rainfed conditions in this region had a degree of confidence of 74.8%.
文摘A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on water use efficiency of upland wheat showed that the input of inorganic fertilizer should be reduced in dry years.
文摘The essential factor that affects wheat production is variety. The paper reviews the history of fifty seven years since establishment of China about evolution of wheat variety in Henan and divides it into four periods according to historical background and nine generations in terms of developing trend of wheat variety evolution. The analysis on characteristics and influence of wheat variety evolution to wheat production indicates the regulation and contribution of wheat variety evolution, which provides reference for breeding, extending and updating of wheat variety in Henan.
文摘The bread-making quality of wheat is a highly complex trait that depends on both genetic and environmental factors. This study aims at evaluating the effects of different rates, time and splitting of nitrogen fertilization on the technological quality of wheat cultivated in the Brazilian Southern region. The samples of bread wheat (Triticum aestivum L.), Onix, Quartzo and Mirante cultivars, were obtained through the use of nitrogen (N) fertilizer applied in doses of 36, 100 and 120 kg N ha1 at sowing, tillering and flowering. Laboratorial tests were carried out in a completely randomized design with four repetitions. The parameters analyzed were: grain yield, total protein, protein fractions, gliadins, glutenins, albumins and globulins, sulfur, gluten strength (W), dough tenacity (P), extensibility (L) and stability (S), bread specific volume and bread firmness. While the content of total and reserve proteins is significantly increased with a higher rate and splitting of N, the content of metabolic proteins remains constant. A mean increase in the quality parameters W (24.37%), L (14.86%) and P (11.59%) among cultivars was noticed after application of 120 kg N ha1, split at sowing, tillering and flowering. Bread specific volume increased, while bread firmness decreased with a higher rate of N fertilizer. Wheat fertilization with high doses of N does not cause induction to S deficiency in the grains. Not only increasing the N fertilization rate, but also splitting the N rate had a beneficial effect on the technological quality of wheat.
文摘Sowing time of wheat in south eastern Australia varies from autumn to early winter, depending on the seasonal 'break'. Wheat yields are often reduced by frost damage at flowering time and by heat-and/or water-stress during grain filling. Selecting suitable varieties for specific sowing times is a complex decision farmers make because these varietal phenology and climate risks have to be assessed together. In order to help farmers make decisions, they need tools that simulate and analyse agronomically-suitable sowing dates (ASSD) for a given variety of wheat. The hypothesis underlining this study is the integration of a wheat phenology model with historical climate data is an effective approach to modelling the ASSD of current varieties used in the wheat growing areas of Southern NSW. The parameters of the wheat phenology model were based on data from five years of field experimentation across 15 sites. Data from four sites were used to examine varietal suitability in relation to sowing time and its associated risks of frost and heat damage. The optimum ASSD for any variety at 72 locations across Southern NSW was investigated. The results showed that there were substantial spatial variations in the ASSD across the target region. ASSD for a late maturing wheat genotype (EGA Gregory) can range from early March to late April, while the earliest acceptable sowing date for an early maturing spring wheat genotype (H46) can range from early to late May. The wide range of spatial variation in the earliest and latest sowing dates, as well as the varied length of sowing opportunities, highlighted the importance of being able to apply a modelling approach which can integrate information on crop phenology with climate risk for a given location. This approach would allow better decision-making on suitable varieties and sowing dates in order to minimise the risk of frost and heat damage affecting crop yield.
基金supported by the Jiangsu Provincial Natural Science Foundation of China(No.BK-2010612)the Foundation of State Key Laboratory of Soil and Sustainable Agriculture,China(No.Y05-2010034)the National Natural Science Foundation of China(No.41001147)
文摘The rice-wheat rotation in southern China is characterized by frequent flooding-draining water regime and heavy nitrogen(N)fertilization. There is a substantial lack of studies into the behavior of dissolved organic nitrogen(DON) in the intensively managed agroecosystem. A 3-year in situ field experiment was conducted to determine DON leaching and its seasonal and yearly variations as affected by fertilization, irrigation and precipitation over 6 consecutive rice/wheat seasons. Under the conventional N practice(300kg N ha-1for rice and 200 kg N ha-1for wheat), the seasonal average DON concentrations in leachate(100 cm soil depth) for the three rice and wheat seasons were 0.6–1.1 and 0.1–2.3 mg N L-1, respectively. The cumulative DON leaching was estimated to be1.1–2.3 kg N ha-1for the rice seasons and 0.01–1.3 kg N ha-1for the wheat seasons, with an annual total of 1.1–3.6 kg N ha-1. In the rice seasons, N fertilizer had little effect(P > 0.05) on DON leaching; precipitation and irrigation imported 3.6–9.1 kg N ha-1of DON, which may thus conceal the fertilization effect on DON. In the wheat seasons, N fertilization had a positive effect(P < 0.01)on DON. Nevertheless, this promotive effect was strongly influenced by variable precipitation, which also carried 1.8–2.9 kg N ha-1of DON into fields. Despite a very small proportion to chemical N applied and large variations driven by water regime, DON leaching is necessarily involved in the integrated field N budget in the rice-wheat rotation due to its relatively greater amount compared to other natural ecosystems.