A pre-emulsified mixture of linseed and algae oils (15/10) and stabilized with 686 ppm of a lyophilized water extract of Melissa officinalis, was successfully applied in dry fermented sausages to increase the ω-3 P...A pre-emulsified mixture of linseed and algae oils (15/10) and stabilized with 686 ppm of a lyophilized water extract of Melissa officinalis, was successfully applied in dry fermented sausages to increase the ω-3 PUFA content. The objective of this work was to evaluate the stability of this modified formulation during the storage and to compare it to that of a traditional formulation. Traditional and modified products were stored during 90 days at 4 °C in aerobic conditions. Fatty acid profiles, TBARS and volatile compounds derived from oxidation were analyzed at 0, 30 and 90 days of storage. The fatty acid profiles did not significantly change along the storage period. The stabilizing effect of the natural antioxidants ofM. officinalis could contribute to detect no losses of to-3 PUFA in Modified (30 days: 2.13 g/100 g of product, 90 days: 2.33 g/100 g of product), whereas in Control products a slightly significant reduction was detected (30 days: 0.34 g/100 g of product, 90 days: 0.29 g/! 00 g of product). After 90 days, the increases of TBARS and hexanal content were much higher in Control than in Modified (Control: 1.41 mg MDA/kg & 17,915 ng dodecane/kg of dry matter; Modified: 0.48 mg MDA/kg & 2,496 ng dodecane/kg of dry matter). In conclusion, the lyophilized water extract of M. officinalis protected high ωo-3 PUFA of dry fermented sausages from oxidation along the storage time, guaranteeing the nutritional improvements achieved with the modified formulation.展开更多
文摘A pre-emulsified mixture of linseed and algae oils (15/10) and stabilized with 686 ppm of a lyophilized water extract of Melissa officinalis, was successfully applied in dry fermented sausages to increase the ω-3 PUFA content. The objective of this work was to evaluate the stability of this modified formulation during the storage and to compare it to that of a traditional formulation. Traditional and modified products were stored during 90 days at 4 °C in aerobic conditions. Fatty acid profiles, TBARS and volatile compounds derived from oxidation were analyzed at 0, 30 and 90 days of storage. The fatty acid profiles did not significantly change along the storage period. The stabilizing effect of the natural antioxidants ofM. officinalis could contribute to detect no losses of to-3 PUFA in Modified (30 days: 2.13 g/100 g of product, 90 days: 2.33 g/100 g of product), whereas in Control products a slightly significant reduction was detected (30 days: 0.34 g/100 g of product, 90 days: 0.29 g/! 00 g of product). After 90 days, the increases of TBARS and hexanal content were much higher in Control than in Modified (Control: 1.41 mg MDA/kg & 17,915 ng dodecane/kg of dry matter; Modified: 0.48 mg MDA/kg & 2,496 ng dodecane/kg of dry matter). In conclusion, the lyophilized water extract of M. officinalis protected high ωo-3 PUFA of dry fermented sausages from oxidation along the storage time, guaranteeing the nutritional improvements achieved with the modified formulation.