期刊文献+
共找到740篇文章
< 1 2 37 >
每页显示 20 50 100
基于优化极限学习机模型的边坡稳定性预测研究
1
作者 陈家豪 张燕 +3 位作者 杜明芳 黄海荣 徐志军 陈旭 《金属矿山》 CAS 北大核心 2024年第6期191-198,共8页
边坡稳定性预测对工程安全及地质灾害防治极其重要,目前机器学习在边坡稳定性预测较广泛,例如BP神经网络、支持向量机(SVM)、极限学习机(ELM)等。但传统的ELM模型在预测边坡稳定性时存在易陷入局部最小值、难以选择合适学习率的问题,针... 边坡稳定性预测对工程安全及地质灾害防治极其重要,目前机器学习在边坡稳定性预测较广泛,例如BP神经网络、支持向量机(SVM)、极限学习机(ELM)等。但传统的ELM模型在预测边坡稳定性时存在易陷入局部最小值、难以选择合适学习率的问题,针对此问题,提出了一种基于主成分分析法(PCA)和爬行动物搜索法(RSA)并行优化极限学习机(ELM)的边坡稳定性预测模型。此模型利用PCA算法对数据进行降维,减少数据的冗余性,并利用RSA算法优化ELM模型的输入层权值和隐含层偏置,极大地提高了模型的预测精度和预测效率。将传统的ELM模型、RSA-ELM模型、PCA-SVM模型及PCA-RSA-ELM 4种模型进行对比,从而得到PCA-RSA-ELM模型在边坡稳定性预测这类问题上的精确性更高,为边坡稳定性预测分析提供新的思路,对防灾减灾及保护国民经济安全具有重大意义。 展开更多
关键词 安全工程 边坡稳定性 极限学习 PCA 降维 爬行动物搜索 混淆矩阵
下载PDF
基于改进灰狼优化核极限学习机的疾病诊断模型
2
作者 魏瑞芳 《科技通报》 2024年第3期47-52,共6页
为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个... 为提高疾病诊断的效率,本文提出一种改进的灰狼优化算法与核极限学习机的混合模型。通过引入一种新的机制提高灰狼优化算法的探索与利用能力,改进的灰狼优化算法在进行特征选择的同时,也对核极限学习机的2个关键参数进行优化,模型在2个疾病数据集上进行实验验证。实验结果显示:提出的模型在准确率、敏感性、特异性等评价指标方面相对于其他混合模型高出约1%~2%,带特征选择的优化模型相对于没有特征选择的模型在评价指标上也高出约1%~2%。结果表明提出的模型具有一定的优势。 展开更多
关键词 灰狼优化算法 极限学习 疾病诊断 特征选择 参数优化
下载PDF
基于极限学习机模型参数优化的光伏功率区间预测技术 被引量:1
3
作者 何之倬 张颖 +4 位作者 郑刚 郑芳 黄琬迪 张沈习 程浩忠 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期285-294,共10页
提出一种基于极限学习机(ELM)模型参数优化的光伏功率区间预测技术.首先,提出加权欧氏距离作为光伏功率预测区间评估指标,筛选历史样本单元并优化ELM训练集;然后,提出ELM参数混合寻优算法,利用精英保留策略遗传算法与分位数回归优化ELM... 提出一种基于极限学习机(ELM)模型参数优化的光伏功率区间预测技术.首先,提出加权欧氏距离作为光伏功率预测区间评估指标,筛选历史样本单元并优化ELM训练集;然后,提出ELM参数混合寻优算法,利用精英保留策略遗传算法与分位数回归优化ELM模型隐层输入及输出权重与偏置参数,并采用训练后的模型预测光伏功率区间;最后,基于光伏电站与气象站历史数据构建实际算例,预测光伏功率区间,并与其他方法得到的结果进行对比.算例结果表明:所提方法在增加区间预测可信度的同时,能较大程度提高区间预测准确度. 展开更多
关键词 光伏功率 区间预测 极限学习 参数优化 加权欧氏距离指标
下载PDF
基于改进麻雀搜索算法的优化型极限学习机 被引量:2
4
作者 张恩辅 段冰冰 +2 位作者 刘津平 马云鹏 金音 《软件工程》 2023年第9期18-24,共7页
为提升极限学习机的性能,文章利用改进的麻雀搜索算法对极限学习机的参数进行优化。首先,提出一种菱形分组机制用于增加算法种群多样性和融合模拟退火思想改善算法陷入局部极值点的缺陷。其次,通过10个基准函数进行仿真测试,实验结果表... 为提升极限学习机的性能,文章利用改进的麻雀搜索算法对极限学习机的参数进行优化。首先,提出一种菱形分组机制用于增加算法种群多样性和融合模拟退火思想改善算法陷入局部极值点的缺陷。其次,通过10个基准函数进行仿真测试,实验结果表明,改进的麻雀搜索算法在大部分测试函数上表现出更好的性能。最后,将改进的算法用于优化极限学习机的输入权阈值,通过基准数据集仿真测试,优化后的极限学习机在建模精度上平均提高了7.4%。 展开更多
关键词 极限学习 麻雀搜索算法 分组 模拟退火
下载PDF
基于萤火虫扰动麻雀搜索算法-极限学习机的光伏阵列故障诊断方法研究 被引量:8
5
作者 赵靖英 吴晶晶 +2 位作者 张雪辉 张文煜 姚帅亮 《电网技术》 EI CSCD 北大核心 2023年第4期1612-1622,共11页
光伏阵列具有随机性、间歇性输出特点,发生故障严重影响电力系统安全运行。针对有效表征不同程度局部阴影与雨天接地故障的故障特征量缺乏的问题,分析不同故障状态下光伏阵列运行特征,提出一种新的6维故障特征向量:开路电压Uoc、最大功... 光伏阵列具有随机性、间歇性输出特点,发生故障严重影响电力系统安全运行。针对有效表征不同程度局部阴影与雨天接地故障的故障特征量缺乏的问题,分析不同故障状态下光伏阵列运行特征,提出一种新的6维故障特征向量:开路电压Uoc、最大功率点电压Um与短路电流Isc、最大功率点电流Im分别表征短路与断路故障;U-I特性曲线二阶导数零点数表征局部阴影故障,并利用遗传模拟退火算法优化的模糊C均值聚类算法(the fuzzy C-means clustering algorithm optimized by the genetic simulated annealing algorithm,GSA-FCM)验证Um、Im表征不同程度局部阴影故障的有效性;并网电流总谐波畸变率表征雨天接地故障。引入萤火虫扰动的麻雀搜索算法(sparrow search algorithm with firefly perturbation,FSSA)优化传统极限学习机(extreme learning machine,ELM),建立FSSA-ELM模型,解决传统故障诊断方法实现复杂、收敛速度慢的问题。基于现场数据驱动,建立考虑对地寄生电容的光伏系统仿真模型和实验平台,设计2种不同辐照度范围的仿真方案和实验方案进行方法验证,结果表明,FSSA-ELM模型结合ELM实现简单且FSSA收敛速度快的特点,利用6维故障特征向量,可准确识别光伏阵列故障类型。 展开更多
关键词 光伏阵列 故障诊断 并网电流总谐波畸变率 故障特征量 萤火虫扰动麻雀搜索算法–极限学习 寄生电容
下载PDF
基于麻雀搜索算法优化的改进多核极限学习机的风机叶片结冰故障诊断模型 被引量:3
6
作者 杨瑾 丁云飞(指导) 张子奇 《上海电机学院学报》 2023年第4期209-214,共6页
风机叶片结冰是风力发电中影响风电机组安全运行的常见问题,准确检测叶片结冰故障能有效提高风电场的安全性与发电效率。为提升风机叶片结冰故障诊断正确率,提出了一种基于麻雀优化改进多核极限学习机(SSA-IMKELM)的风机叶片结冰故障诊... 风机叶片结冰是风力发电中影响风电机组安全运行的常见问题,准确检测叶片结冰故障能有效提高风电场的安全性与发电效率。为提升风机叶片结冰故障诊断正确率,提出了一种基于麻雀优化改进多核极限学习机(SSA-IMKELM)的风机叶片结冰故障诊断模型。首先,将传统的多核极限学习机(MKELM)多参数的单一模型分解为3个子模型;其次,通过固定上一子模型的相关参数对子模型使用麻雀搜索算法(SSA)寻优,从而解决了单一的多参数模型寻优困难的问题;最后,设定限定条件,保证结冰故障诊断的正确率不会出现下降的问题。实验结果表明:SSA-IMKELM模型能够有效提升风机叶片结冰故障诊断正确率。 展开更多
关键词 改进多核极限学习 叶片结冰故障诊断 学习 麻雀搜索算法
下载PDF
基于改进秃鹰算法优化极限学习机的谐波发射水平估计 被引量:2
7
作者 夏焰坤 朱赵晴 +2 位作者 唐文张 任俊杰 张艺凡 《电力系统保护与控制》 EI CSCD 北大核心 2024年第1期156-165,共10页
针对目前电力系统谐波发射水平难以直接测量的问题,提出了一种基于改进秃鹰算法(improved bald eagle search,IBES)优化极限学习机(extreme learning machine,ELM)的谐波发射水平估计方法。首先,在传统秃鹰搜索算法中引入Tent混沌映射... 针对目前电力系统谐波发射水平难以直接测量的问题,提出了一种基于改进秃鹰算法(improved bald eagle search,IBES)优化极限学习机(extreme learning machine,ELM)的谐波发射水平估计方法。首先,在传统秃鹰搜索算法中引入Tent混沌映射和柯西变异算子,利用IBES算法对ELM模型的输入权重和阈值进行寻优。其次,输入公共连接点(point of common coupling,PCC)处谐波电压和谐波电流,代入IBES-ELM模型,估计用户侧和系统侧谐波发射水平。最后进行仿真和工程实例分析,并与其他算法的估计结果进行对比。结果表明,所提IBES-ELM方法估计精度优于长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolution neural network,CNN)、反向传播神经网络(back propagation neural network,BP)和CNN-LSTM算法模型,验证了该方法的有效性和稳定性。 展开更多
关键词 谐波发射水平 秃鹰搜索优化 Tent混沌映射 柯西变异算子 极限学习
下载PDF
基于集成SAO优化互相关熵极限学习机模型的变压器故障诊断方法
8
作者 孙世明 岑红星 +3 位作者 白建民 冯雪松 焦昆 马文涛 《电测与仪表》 北大核心 2024年第9期56-64,共9页
针对基于传统机器学习的变压器故障诊断方法在数据不平衡、训练数据集存在离群值等条件下稳健性弱和泛化能力不强等问题,提出一种稳健集成学习模型用于实现电力变压器的高精度故障诊断。首先针对离群值对模型稳健性的影响,将互相关熵损... 针对基于传统机器学习的变压器故障诊断方法在数据不平衡、训练数据集存在离群值等条件下稳健性弱和泛化能力不强等问题,提出一种稳健集成学习模型用于实现电力变压器的高精度故障诊断。首先针对离群值对模型稳健性的影响,将互相关熵损失(correntropy loss,CL)引入极限学习机(extreme learning machine,ELM)框架并应用梯度法获得最优解,以构建稳健学习模型CLELM,并利用雪消融优化器(snow ablation optimizer,SAO)优化CLELM的隐含层权重和偏差,以进一步改进其性能。其次,为了增强模型的泛化能力,将多个SAO-CLELM进行加权融合以构成稳健集成学习模型。最后,针对变压器故障数据集不平衡问题,采用合成少数类过采样技术对数据进行扩充,并应用平衡化后的数据训练集成SAO-CLELM模型以实现故障诊断。在两种故障测试集下对所提集成SAO-CLELM模型的故障诊断性能进行了验证,实验结果表明所提模型能获得准确的故障分类结果,说明其具有较高的稳健性和泛化性。 展开更多
关键词 电力变压器 故障诊断 集成学习 极限学习 互相关熵损失 雪消融优化
下载PDF
基于近邻成分分析与优化核极限学习机的光伏接入配电网漏电识别 被引量:1
9
作者 汪自虎 王文天 +3 位作者 惠慧 王铭 李刚 许洪华 《高压电器》 CAS CSCD 北大核心 2024年第6期203-211,共9页
在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learn... 在光伏接入的配电网中,现有漏电保护装置无法区分光伏设备漏电流与发生生物触电时的故障漏电流,导致系统存在安全隐患。针对此问题,提出一种基于近邻成分分析(neighborhood component analysis,NCA)与核极限学习机(kernel extreme learning machine,KELM)的光伏接入配电网漏电识别方法。首先,构建了9维原始故障特征集,并采用NCA从9维特征集中选择得到4维高相关性特征子集;然后,将得到的4维特征子集作为KELM的输入,建立基于KELM的漏电识别模型,并通过麻雀搜索算法(sparrow search algorithm,SSA)对KELM模型中的参数进行优化;最后,将所提SSA-KELM方法应用于漏电识别,并与标准核极限学习机(KELM)、支持向量机(SVM)、BP神经网络(BPNN)进行了对比。比较结果表明:SSA-KELM对光伏接入配电网漏电类型的识别率最高,平均识别准确率达97.98%,为有效识别生物体触电与光伏漏电提供一定理论参考。 展开更多
关键词 光伏接入的配电网 生物触电 光伏设备漏电 近邻成分分析 极限学习 麻雀搜索算法
下载PDF
基于金枪鱼群算法优化极限学习机的混凝土抗压强度预测
10
作者 张博吾 耿秀丽 《计算机应用研究》 CSCD 北大核心 2024年第2期444-449,共6页
混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新... 混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新式仿生算法金枪鱼群算法优化极限学习机(TSO-ELM)的混凝土抗压强度预测方法。该方法通过对ELM隐藏层初始参数中的连接权值与偏置值使用TSO进行寻优,有效提升了ELM的预测准确度。在仿真实验部分,通过两组混凝土数据集对ELM的预测速度、TSO的寻优能力、TSO-ELM模型的泛化性逐一进行验证。结果表明,该方法可以有效提高预测的速度与精准度,迭代次数更少,同时具有良好的泛化性,为现场施工及时进行混凝土抗压强度的预测提供了一种新方法。 展开更多
关键词 混凝土 抗压强度 金枪鱼群优化算法 极限学习 软测量
下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
11
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习 小波包变换 超参数优化
下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:1
12
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习 超参数优化
下载PDF
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测 被引量:1
13
作者 张代凤 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预... 准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。 展开更多
关键词 日径流预测 正则化极限学习 蜣螂优化算法 珍鲹优化算法 泥环算法 小波包变换 三峡水库
下载PDF
基于改进野狗优化算法优化极限学习机的空调负荷预测方法
14
作者 代广超 吴维敏 《制冷与空调(四川)》 2024年第3期320-329,共10页
针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷... 针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷预测模型。首先利用DOA优化ELM的输入权值和隐层阈值,建立DOA-ELM预测模型,利用MGA改进DOA-ELM模型的预测稳定性和预测精度,建立(Microbial genetic algorithm Dingo optimization algorithm-Extreme learning machine)MDOA-ELM预测模型。为降低预测模型的维度,通过灰色关联分析(GRA)筛选影响空调负荷的输入输出因素。为验证算法有效性,以某工厂中央空调系统为例进行实例分析。实验结果表明,所建负荷预测模型相较于对比模型预测精度高,稳定性好,因此可更好地满足工程实际需求。 展开更多
关键词 负荷预测 微生物遗传算法 野狗优化算法 极限学习 灰色关联分析
下载PDF
核主元分析与优化核极限学习机模型在电石炉爆炸风险评估中的应用
15
作者 毕颖 马世杰 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2075-2084,共10页
为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性... 为准确判断电热法电石生产工艺中电石炉的爆炸风险等级,提出了一种精准有效的风险评估模型。首先,基于危险与可操作性(Hazard and Operability, HAZOP)分析筛选出人、物料、设备、管理四方面的34项爆炸风险因素,考虑到因素间存在非线性关联,采用核主元分析(Kernel Principal Component Analysis, KPCA)进行属性约简,减少冗杂信息的干扰。其次,利用融合了Tent混沌序列、高斯变异与混沌扰动的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)寻优核极限学习机(Kernel Extreme Learning Machine, KELM)的惩罚系数与核参数,建立KPCA-ISSA-KELM风险评估模型。最后,使用该模型分析83组实例数据,选取其中59组用于模型训练,其余24组用于测试。在测试结果中,该模型正确分类了22组数据的风险等级,判别准确率为91.67%,在各项性能指标上均优于对照模型,表明该模型对电热法工艺电石炉的爆炸风险等级具备高识别精度。 展开更多
关键词 安全工程 风险评估 电石炉 核主元分析(KPCA) 麻雀搜索算法(SSA) 极限学习(KELM)
下载PDF
基于深度信念极限学习机与卷积优化算法的洪水预报方法
16
作者 徐军杨 张奇伟 +3 位作者 蔡鹏 罗远林 张坚 张楚 《水电能源科学》 北大核心 2024年第8期48-52,共5页
针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作... 针对洪水峰高量大、汇流时间短以及流域地貌复杂,导致洪水预报难度大和预报精度不理想的问题,提出一种基于深度信念极限学习机(DBN-ELM)和改进卷积优化算法(ICOA)的ICOA-DBN-ELM模型。以渭河上游北道水文站点2006~2020年的日径流数据作为输入数据,并将该模型与BP、ELM、DBN-BP、DBN-ELM、COA-DBN-ELM模型进行对比。结果表明,所建立的ICOA-DBN-ELM模型有更好的预报精度,在洪水预报领域具有良好的应用前景。 展开更多
关键词 洪水预报 深度信念极限学习 参数优化 卷积优化算法
下载PDF
基于混合黑猩猩优化极限学习机的电力信息物理系统虚假数据注入攻击定位检测
17
作者 席磊 董璐 +2 位作者 程琛 田习龙 李宗泽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第14期46-58,共13页
针对已有检测方法无法对虚假数据注入攻击(false data injection attack,FDIA)进行精确定位的问题,提出了一种基于混合黑猩猩优化极限学习机(extreme learning machine,ELM)的电力信息物理系统FDIA的定位检测方法。首先,使用ELM作为分类... 针对已有检测方法无法对虚假数据注入攻击(false data injection attack,FDIA)进行精确定位的问题,提出了一种基于混合黑猩猩优化极限学习机(extreme learning machine,ELM)的电力信息物理系统FDIA的定位检测方法。首先,使用ELM作为分类器,用于提取电力数据特征并检测系统各节点的异常状态。然后,采用一种具有全局搜索能力且局部收敛速度更快的混合黑猩猩优化策略,用于寻找ELM最优隐藏层神经元数量。建立基于混合黑猩猩优化ELM的检测方法,实现对FDIA的精准定位,有利于后续防御措施的实施。最后,在IEEE 14和IEEE 57节点系统中进行大量仿真对比实验。结果表明,所提方法具有更佳的准确率、查准率、查全率和F1值,对FDIA能够进行更为精准的定位检测。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 极限学习 黑猩猩优化
下载PDF
基于改进非洲秃鹫算法优化极限学习机的船舶运动预测
18
作者 戚得众 吴云志 +1 位作者 丁璐 丁坦 《电子测量技术》 北大核心 2024年第5期54-60,共7页
针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应... 针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测。在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应算子,调整两类秃鹫对其他秃鹫的指引作用,提升算法的收敛速度和解的质量。利用IAVOA优化的ELM模型对船模水池试验运动数据进行预测,并采用均方根误差和平均绝对误差评判该预测模型,与现有其他启发式算法优化ELM模型比较,所提出的IAVOA-ELM具有更优的预测精度和泛化能力。 展开更多
关键词 极限学习 秃鹫优化算法 Circle混沌映射 自适应调整算子 船舶运动预测
下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
19
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合核极限学习 贝叶斯优化
下载PDF
基于超参数优化的极限学习机区域水资源短缺风险评价
20
作者 程刚 刀海娅 崔东文 《水力发电》 CAS 2024年第7期17-23,78,共8页
为科学评价区域水资源短缺风险水平,改进极限学习机(ELM)评价性能,提出晶体结构算法(CryStAl)、鹈鹕优化算法(POA)与ELM组合的水资源短缺风险评价模型,并通过云南省水资源短缺风险评价实例进行验证。首先,简要介绍CryStAl、POA原理,通过... 为科学评价区域水资源短缺风险水平,改进极限学习机(ELM)评价性能,提出晶体结构算法(CryStAl)、鹈鹕优化算法(POA)与ELM组合的水资源短缺风险评价模型,并通过云南省水资源短缺风险评价实例进行验证。首先,简要介绍CryStAl、POA原理,通过4个标准函数对CryStAl、POA进行仿真测试;其次,建立水资源短缺风险评价指标体系和等级标准,采用线性内插和随机选取的方法生成样本,并构建ELM超参数优化适应度函数;最后,采用CryStAl、POA对适应度函数进行寻优,利用寻优获得的最佳ELM超参数建立CryStAl-ELM、POA-ELM模型对实例各年度水资源短缺风险进行评价,结果与模糊综合评价法、CryStAl-SVM、POA-SVM、ELM、SVM模型的评价结果作对比。结果表明:CryStAl、POA具有较好的寻优精度及全局搜索能力;CryStAl-ELM、POA-ELM模型对检验样本评价的平均绝对百分比误差(MAPE)分别为0.077%、0.083%,评价精度较CryStAl-SVM、POA-SVM模型提高57.7%以上,较SELM、SVM模型提高83.5%以上;CryStAl、POA能有效优化ELM超参数,提高ELM的评价性能。CryStAl-ELM、POA-ELM模型评价结果表明,实例2006年~2008年水资源短缺风险为“较高风险”,2009年~2012年为“中风险”,2013年~2019年为“较低风险”,2020年~2025年为“低风险”;近15年来云南省水资源短缺风险水平呈下降趋势,且下降趋势显著。 展开更多
关键词 水资源短缺 风险等级 极限学习 晶体结构算法 鹈鹕优化算法 仿真测试 云南省
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部