According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed...According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed single-layered agar solid medium. Colony was cultured and bacteria were collected. The morphologies of the object bacteria were observed using crystal violet staining, scanning electron microscope(SEM) and transmission electron microscope (TEM). The result of 16S rDNA identification shows that this bacterium belongs to Leptospirillum ferriphilum and it is named as Leptospirillum ferriphilum strain D1. These results indicate that this new single-layered agar solid medium is efficient and physiological-biochemical characteristics show that the optimum simple for isolation of Leptospirillum ferriphilum. Additionally, initial pH value and its growth temperature are 1.68 and 40℃.展开更多
Bioleaching of chalcopyrite with different crystal structures (α-phase,β-phase and γ-phase) by Acidianus manzaensis was comparatively studied by synchrotron radiation based X-ray diffraction (SR-XRD) and S K-edge X...Bioleaching of chalcopyrite with different crystal structures (α-phase,β-phase and γ-phase) by Acidianus manzaensis was comparatively studied by synchrotron radiation based X-ray diffraction (SR-XRD) and S K-edge X-ray absorption near edge structure (XANES) spectroscopy. The α-phase,β-phase and γ-phase chalcopyrite was prepared by heating original chalcopyrite at 583, 773 and 848 K, respectively. Bioleaching results showed that [Cu^2+] in the leaching solution of α-phase,β-phase,γ-phase and original chalcopyrite after 10 days of bioleaching was 1.27, 1.86, 1.43 and 1.13 g/L, respectively, suggesting that β-phase had a better leaching kinetics than others. SR-XRD and XANES results indicated that jarosite and chalcopyrite were the main components in the leaching residues in all cases, and elemental sulfur formed in the early stage of bioleaching. While for β-phase and γ-phase chalcopyrite during bioleaching, bornite was produced in the initial stage of leaching, and turned into chalcocite on day 6.展开更多
Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratio...Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratios.Bioleaching behavior indicates that silver-bearing solid waste can enhance the bioleaching process,and the redox potential is much higher than the proposed appropriate range(380−480 mV vs Ag/AgCl)with the solid waste added.There is a positive correlation between temperature and copper extraction rate.The kinetics data fit well with the shrinking-core model.Under these leaching conditions,the bioleaching of chalcopyrite is controlled by internal diffusion with calculated apparent activation energy(Ea)of 28.24 kJ/mol.This work is possible benificial to promote the industrial application of silver catalyst in leaching of chalcopyrite.展开更多
Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating ...Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4and Al2O3is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3,CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors;while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm^(2) for the S1 coating.展开更多
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau...The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.展开更多
基金Projects(50374075, 50321402) supported by the National Natural Science Foundation of ChinaProject(2004CB619204) supported by the National Basic Research and Development Program of China+1 种基金Project(200549) supported by the Specialized Research Fund of the NationalExcellent PhD Thesis
文摘According to physiological and biochemical characteristics of Leptospirillum ferriphilum, a strain of object bacteria was isolated successfully. Bacteria were enriched by selective liquid medium and plated on designed single-layered agar solid medium. Colony was cultured and bacteria were collected. The morphologies of the object bacteria were observed using crystal violet staining, scanning electron microscope(SEM) and transmission electron microscope (TEM). The result of 16S rDNA identification shows that this bacterium belongs to Leptospirillum ferriphilum and it is named as Leptospirillum ferriphilum strain D1. These results indicate that this new single-layered agar solid medium is efficient and physiological-biochemical characteristics show that the optimum simple for isolation of Leptospirillum ferriphilum. Additionally, initial pH value and its growth temperature are 1.68 and 40℃.
基金Projects(51774342,51404104) supported by the National Natural Science Foundation of ChinaProject(2017A030313219) supported by the Natural Science Foundation of Guangdong Province,China+2 种基金Project(2015JJ3062) supported by Science Foundation for Youths of Hunan Province,ChinaProjects(2017-BEPC-PT-001052,2016-BEPC-PT-000887) supported by Beijing Synchrotron Radiation Facility Public User Program,ChinaProject(2016-SSRF-PT-004969) supported by the Open Funds of Shanghai Synchrotron Radiation Facility,China
文摘Bioleaching of chalcopyrite with different crystal structures (α-phase,β-phase and γ-phase) by Acidianus manzaensis was comparatively studied by synchrotron radiation based X-ray diffraction (SR-XRD) and S K-edge X-ray absorption near edge structure (XANES) spectroscopy. The α-phase,β-phase and γ-phase chalcopyrite was prepared by heating original chalcopyrite at 583, 773 and 848 K, respectively. Bioleaching results showed that [Cu^2+] in the leaching solution of α-phase,β-phase,γ-phase and original chalcopyrite after 10 days of bioleaching was 1.27, 1.86, 1.43 and 1.13 g/L, respectively, suggesting that β-phase had a better leaching kinetics than others. SR-XRD and XANES results indicated that jarosite and chalcopyrite were the main components in the leaching residues in all cases, and elemental sulfur formed in the early stage of bioleaching. While for β-phase and γ-phase chalcopyrite during bioleaching, bornite was produced in the initial stage of leaching, and turned into chalcocite on day 6.
基金Project(2018JJ1041)supported by the Natural Science Foundation of Hunan,ChinaProjects(51774332,U1932129,51804350 and 51934009)supported by the National Natural Science Foundation of China。
文摘Silver ion can be useful in improving chalcopyrite bioleaching efficiency.In this work,leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratios.Bioleaching behavior indicates that silver-bearing solid waste can enhance the bioleaching process,and the redox potential is much higher than the proposed appropriate range(380−480 mV vs Ag/AgCl)with the solid waste added.There is a positive correlation between temperature and copper extraction rate.The kinetics data fit well with the shrinking-core model.Under these leaching conditions,the bioleaching of chalcopyrite is controlled by internal diffusion with calculated apparent activation energy(Ea)of 28.24 kJ/mol.This work is possible benificial to promote the industrial application of silver catalyst in leaching of chalcopyrite.
基金supported by the National Natural Science Foundation of China (No. 51671084)the Postgraduate Scientific Research Innovation Project of Hunan Province, China (No. QL20210092)。
文摘Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4and Al2O3is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3,CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors;while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm^(2) for the S1 coating.
基金jointly supported by the Geological Survey of China (Grant No. 1212011140050)the National Natural Science Foundation of China (Grant No. 41663006)
文摘The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.