Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geoc...Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/A1203, Cr/A1203, Ni/A1203 and Se/A1203 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.展开更多
According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in ...According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in the river mouth area,the adjustment of river regime,the effect of river regulation projects and changes of flowing capacity of the channel are analyzed.It is revealed that the water and sediment regulation is efficient to reduce deposition and improve the flowing capacity and the conditions of sediment transport.展开更多
Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray f...Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray fluorescence spectrometry. Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations. Correlation and cluster analyses allowed classification of the study area into four geochemical regions: Regions Ⅰ and Ⅲare characterized by high concentrations ofAl2O3, Fe2O3, MgO, Na2O, K2O, Cr, Cu, Mn, Ni, Pb, V, and Zn, and contain fine-grained sediments with mean grain size (Mz)〈22 μm; and; Regions Ⅱ and Ⅳcontain mostly coarse-grained sediments, and are characterized by high concentrations of SiO2, Na2O, and Zr. The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca. Thus, the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River. Ca/Al ratios decrease from Regions Ⅰ and Ⅱ(located in the nearshore zone of the Huanghe River delta) to Regions Ⅲand Ⅳ(distributed in the offshore zone of the northern Huanghe River delta, southern and southeastern Laizhou Bay area).展开更多
基金supported by the National Basic Research Program of China(2010CB428902)National Natural Science Foundation of China(40876088)
文摘Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/A1203, Cr/A1203, Ni/A1203 and Se/A1203 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.
基金Supported by National Natural Science Foundation of China(No.50679053)
文摘According to the results of the water and sediment regulations of the Yellow River in year 2002—2007,the effect of erosion and deposition on the lower reaches,the amount and distribution of erosion and deposition in the river mouth area,the adjustment of river regime,the effect of river regulation projects and changes of flowing capacity of the channel are analyzed.It is revealed that the water and sediment regulation is efficient to reduce deposition and improve the flowing capacity and the conditions of sediment transport.
基金Supported by the National Natural Science Foundation for Young Scientists of China (No.40806026)the National Special Research Fund for the Non-Profit Sector (No.200805063,201205001)+1 种基金the 908 Project of the State Oceanic Administration, China (No.908-02-02-05)the Basic Scientific Research Operations of the First Institute of Oceanography, State Oceanic Administration (Nos.GY02-2008T28,GY02-2009G22)
文摘Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations. Concentrations of 16 elements were measured using X-ray fluorescence spectrometry. Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations. Correlation and cluster analyses allowed classification of the study area into four geochemical regions: Regions Ⅰ and Ⅲare characterized by high concentrations ofAl2O3, Fe2O3, MgO, Na2O, K2O, Cr, Cu, Mn, Ni, Pb, V, and Zn, and contain fine-grained sediments with mean grain size (Mz)〈22 μm; and; Regions Ⅱ and Ⅳcontain mostly coarse-grained sediments, and are characterized by high concentrations of SiO2, Na2O, and Zr. The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca. Thus, the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River. Ca/Al ratios decrease from Regions Ⅰ and Ⅱ(located in the nearshore zone of the Huanghe River delta) to Regions Ⅲand Ⅳ(distributed in the offshore zone of the northern Huanghe River delta, southern and southeastern Laizhou Bay area).