A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous c...A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous cucumber monoculture in a greenhouse for 15 years. In the experiment, AMF communities (created by combining various AMF species that were found to be dominant in natural farm soil) were inoculated into the degraded soil, and then the soil was planted with cucumber. Inoculation with AMF communities did not affect soil pH but increased soil aggregate stability and decreased the concentrations of salt ions and electrical conductivity (EC) in the soil. Inoculation with AMF communities increased the numbers of culturable bacteria and actinomycetes but reduced the number of fungi. AMF communities increased plant growth, soluble sugar content, chlorophyll content, and root activity compared to non-mycorrhizal or a single AMF species treatments. Improvements of soil quality and plant growth were greatest with the following two communities: Glomus etunicatum + G. mosseae + Gigaspora margarita + Acaulospora lacunosa and G. aggregatum + G. etunicatum + G. mosseae + G. versiforme + G. margarita + A. lacunosa. The results suggested that certain AMF communities could substantially improve the quality of degraded soil.展开更多
基金Supported by the National Natural Science Foundation of China (No. 30871737)the 2010 Open Foundation of State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(No. Y052010038)
文摘A pot experiment was performed to determine the effects of arbuscular mycorrhizM fungi (AMF) communities on soil properties and the growth of cucumber seedlings in a degraded soil that had been used for continuous cucumber monoculture in a greenhouse for 15 years. In the experiment, AMF communities (created by combining various AMF species that were found to be dominant in natural farm soil) were inoculated into the degraded soil, and then the soil was planted with cucumber. Inoculation with AMF communities did not affect soil pH but increased soil aggregate stability and decreased the concentrations of salt ions and electrical conductivity (EC) in the soil. Inoculation with AMF communities increased the numbers of culturable bacteria and actinomycetes but reduced the number of fungi. AMF communities increased plant growth, soluble sugar content, chlorophyll content, and root activity compared to non-mycorrhizal or a single AMF species treatments. Improvements of soil quality and plant growth were greatest with the following two communities: Glomus etunicatum + G. mosseae + Gigaspora margarita + Acaulospora lacunosa and G. aggregatum + G. etunicatum + G. mosseae + G. versiforme + G. margarita + A. lacunosa. The results suggested that certain AMF communities could substantially improve the quality of degraded soil.