A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are as...A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity.展开更多
In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angl...In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angle test and the shear test. The durability of the approach is examined by the accelerated abrasion test, and the skid resistance of the pavement with surface coating is examined by the British pendulum test and the surface texture depth test. In the contact angle test, the contact angle between hydrophobic admixture and water is 100.2°. In the shear test, the maximum shear stress is 0.06 MPa for the specimen coated with hydrophobic admixture, which is much lower than that of the specimen without hydrophobic admixture coating, 3.5 MPa. Furth- ermore, the ice and asphalt surface are completely separated for the coated specimen while not for the uncoated specimen. Based on the accelerated abrasion test, the residual hydro- phobic admixture in the veins of the pavement after abrasion still has a deicing effect. From the skid resistance tests, the British pendulum number (BPN) and the texture depth (TD) of the specimen coated with hydrophobic admixtures are larger than those of the standard requirements. The overall experi-mental observation indicates that the approach can effectively reduce close contact between asphalt pavement and ice; therefore, it can be a promising solution to road icing problems in winter.展开更多
The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under differen...The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under different pressure conditions. It was found that the chitosan was adsorbed on the mica surface and formed a stable nanofilm under acid conditions. The adsorbed chitosan nanofilms induced a short- range monotonically steric force when two such surfaces came close in the acid buffer. The adhesion forces between the two chitosan-coated mica surfaces varied with the loads. Strong adhesion between the two chitosan-coated mica surfaces was observed at high pressure. Such pressure-dependent adhesion properties are most likely related to the molecular configurations and hydrogen bonds reordering under high confinement.展开更多
A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the...A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the LVE deformation model with the experimental data.To improve accuracy,a modification of the LVE deformation prediction model is made to simulate the nonlinear property of the deformation of asphalt mixtures,and it is verified by comparing its simulation results with the experimental data.The comparison results show that the LVE deformation prediction model cannot simulate the nonlinear property of the permanent deformation of asphalt mixtures,while the modified deformation prediction model can provide more precise simulations of the whole process of the deformation and the permanent deformation in the dynamic creep test.Thus,the proposed modification greatly improves the accuracy of the LVE deformation prediction model.The modified model can provide a better understanding of the rutting behavior of asphalt pavement.展开更多
In operating flotation plants, the viscosity of the pulp can vary significantly. Consequently, the resulting impact on bubble size is of interest as many plants experience seasonal changes in water temperature, or par...In operating flotation plants, the viscosity of the pulp can vary significantly. Consequently, the resulting impact on bubble size is of interest as many plants experience seasonal changes in water temperature, or particle size changes as ore hardness, mineralogy and throughput fluctuate. However, given its importance in flotation, there existed no mathematical relationship linking bubble size created in flotation machines to the key process variable of fluid viscosity. In this study, a program of investigation to develop such a model was utilizing a pilot-scale mechanical flotation machine, to investigate the effect of water viscosity due to temperature on bubble size distribution. The bubble sizes were determined using a specific bubble viewer and imaging technology. The temperature itself was varied as a method for introducing significant viscosity change. The viscosity-temperature effect introduced a correspondingly significant change in the water viscosity(1619 to 641 μPa·s). It is suggested that a considerably stronger relationship may exist, yielding D32 versus(μ/μ20)0.776, and hence viscosity becomes an important design consideration for plants operating where pulp temperature fluctuations, very small particles or high solid fractions are present.展开更多
Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the trans...Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the transient response to an axisymmetric surface load and fluid pressure in Laplace transform domain. Numerical results are obtained by inverting the Laplace transform presented by Durbin, and are used to analyze the influences of the partial permeable property of boundary and relative rigidity of shell and soil on the transient response of the spherical cavity. It is shown that the influence of these two parameters is remarkable. The available solutions of permeable and impermeable boundary without shell are only two extreme cases of this paper.展开更多
The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the prope...The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.展开更多
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests und...The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.展开更多
Considering the viscoelastic memory effect, we study the correlated motion of two hydrodynamically coupled colloidal particles, each of which confined in a harmonic potential well, in a Kelvin-type and Maxwell-type vi...Considering the viscoelastic memory effect, we study the correlated motion of two hydrodynamically coupled colloidal particles, each of which confined in a harmonic potential well, in a Kelvin-type and Maxwell-type viscoelastic medium. We find that viscoelastic relaxation plays a significant role in modifying the correlation, particularly the cross correlation. We also find that both the real and imaginary parts of the response function are significantly different from the viscous medium case. In particular there is a phase shift between the vanishing imaginary part and the maximal real part of the response function in a viscoelastic medium. In addition imaginary part of the cross correlation response function exhibits a net energy loss (gain) behavior when the elasticity parameter of the medium is larger (smaller) than the critical value for Kelvin (Maxwell) viscoelastic fluid. Some implication of our results and their connection with previous works are discussed.展开更多
基金support from the National Natural Science Foundation of China(Nos.52031012,51904218)。
文摘A spiral fluidity test model of superalloys with 10 mm in height and 3 mm in thickness was designed to evaluate the fluidity of two distinct Ni-based superalloys IN718 and IN939.The factors influencing fluidity are ascertained through comparative analysis utilizing methodologies such as JMat Pro,differential scanning calorimetry and high-temperature confocal laser scanning microscopy.The results show that under identical testing conditions,the fluidity of the IN939 superalloy surpasses that of the IN718 superalloy.When subjected to the same temperature,the melt viscosity and surface tension of IN939 superalloy are considerably reduced relative to those of IN718 superalloy,which is beneficial to improving the melt fluidity.Furthermore,the liquidus temperature and solidification range for the IN939 superalloy are both smaller compared with those of the IN718 superalloy.This condition proves advantageous in delaying dendrite coherency,thereby improving fluidity.
文摘In order to reduce the cohesive force between pavement and ice, the approach of pavement surface coating with hydrophobic admixtures is investigated. The deicing effect of this approach is examined by the contact angle test and the shear test. The durability of the approach is examined by the accelerated abrasion test, and the skid resistance of the pavement with surface coating is examined by the British pendulum test and the surface texture depth test. In the contact angle test, the contact angle between hydrophobic admixture and water is 100.2°. In the shear test, the maximum shear stress is 0.06 MPa for the specimen coated with hydrophobic admixture, which is much lower than that of the specimen without hydrophobic admixture coating, 3.5 MPa. Furth- ermore, the ice and asphalt surface are completely separated for the coated specimen while not for the uncoated specimen. Based on the accelerated abrasion test, the residual hydro- phobic admixture in the veins of the pavement after abrasion still has a deicing effect. From the skid resistance tests, the British pendulum number (BPN) and the texture depth (TD) of the specimen coated with hydrophobic admixtures are larger than those of the standard requirements. The overall experi-mental observation indicates that the approach can effectively reduce close contact between asphalt pavement and ice; therefore, it can be a promising solution to road icing problems in winter.
基金The National Basic Research Program of China(973Program)(No.2011CB707605)the National Natural Science Foundation of China(No.50925519)
文摘The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under different pressure conditions. It was found that the chitosan was adsorbed on the mica surface and formed a stable nanofilm under acid conditions. The adsorbed chitosan nanofilms induced a short- range monotonically steric force when two such surfaces came close in the acid buffer. The adhesion forces between the two chitosan-coated mica surfaces varied with the loads. Strong adhesion between the two chitosan-coated mica surfaces was observed at high pressure. Such pressure-dependent adhesion properties are most likely related to the molecular configurations and hydrogen bonds reordering under high confinement.
基金The National Natural Science Foundation of Chin(No.51378121)
文摘A deformation prediction model for the dynamic creep test is deduced based on the linear viscoelastic(LVE)theory.Then,the defect of the LVE deformation prediction model is analyzed by comparing the prediction of the LVE deformation model with the experimental data.To improve accuracy,a modification of the LVE deformation prediction model is made to simulate the nonlinear property of the deformation of asphalt mixtures,and it is verified by comparing its simulation results with the experimental data.The comparison results show that the LVE deformation prediction model cannot simulate the nonlinear property of the permanent deformation of asphalt mixtures,while the modified deformation prediction model can provide more precise simulations of the whole process of the deformation and the permanent deformation in the dynamic creep test.Thus,the proposed modification greatly improves the accuracy of the LVE deformation prediction model.The modified model can provide a better understanding of the rutting behavior of asphalt pavement.
基金the Chair in Mineral Processing at McGill University, under the Collaborative Research and Development Program of NSERC (Natural Sciences and Engineering Research Council of Canada) with industrial sponsorship from Vale, Teck Cominco, Xstrata Process Support, Agnico-Eagle, Shell Canada, Barrick Gold, COREM, SGS Lakefield Research and Flottec
文摘In operating flotation plants, the viscosity of the pulp can vary significantly. Consequently, the resulting impact on bubble size is of interest as many plants experience seasonal changes in water temperature, or particle size changes as ore hardness, mineralogy and throughput fluctuate. However, given its importance in flotation, there existed no mathematical relationship linking bubble size created in flotation machines to the key process variable of fluid viscosity. In this study, a program of investigation to develop such a model was utilizing a pilot-scale mechanical flotation machine, to investigate the effect of water viscosity due to temperature on bubble size distribution. The bubble sizes were determined using a specific bubble viewer and imaging technology. The temperature itself was varied as a method for introducing significant viscosity change. The viscosity-temperature effect introduced a correspondingly significant change in the water viscosity(1619 to 641 μPa·s). It is suggested that a considerably stronger relationship may exist, yielding D32 versus(μ/μ20)0.776, and hence viscosity becomes an important design consideration for plants operating where pulp temperature fluctuations, very small particles or high solid fractions are present.
文摘Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the transient response to an axisymmetric surface load and fluid pressure in Laplace transform domain. Numerical results are obtained by inverting the Laplace transform presented by Durbin, and are used to analyze the influences of the partial permeable property of boundary and relative rigidity of shell and soil on the transient response of the spherical cavity. It is shown that the influence of these two parameters is remarkable. The available solutions of permeable and impermeable boundary without shell are only two extreme cases of this paper.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51874372).
文摘The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.
基金This work is supported by the National Natural Science Foundation of China (Grant Nos. 50579006, 50639010 and 50179006).
文摘The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475009 and 10465004, the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy under the Associate Programm, and the Foundation for New Century Excellent Talents in University of China. Authors thank Profs. K.F. He and Z.Q. Huang for useful discussions.
文摘Considering the viscoelastic memory effect, we study the correlated motion of two hydrodynamically coupled colloidal particles, each of which confined in a harmonic potential well, in a Kelvin-type and Maxwell-type viscoelastic medium. We find that viscoelastic relaxation plays a significant role in modifying the correlation, particularly the cross correlation. We also find that both the real and imaginary parts of the response function are significantly different from the viscous medium case. In particular there is a phase shift between the vanishing imaginary part and the maximal real part of the response function in a viscoelastic medium. In addition imaginary part of the cross correlation response function exhibits a net energy loss (gain) behavior when the elasticity parameter of the medium is larger (smaller) than the critical value for Kelvin (Maxwell) viscoelastic fluid. Some implication of our results and their connection with previous works are discussed.