AIM: To determine the in vivo andin vivo effects of cysteamine (CS) on expression and activity of H+-K+-ATPase of gastric mucosal cells in weaning piglets.METHODS: Eighteen litters of newborn Xinhuai piglets were empl...AIM: To determine the in vivo andin vivo effects of cysteamine (CS) on expression and activity of H+-K+-ATPase of gastric mucosal cells in weaning piglets.METHODS: Eighteen litters of newborn Xinhuai piglets were employed in the in vivo experiment and allocated to control and treatment groups. From 12 d of age (D12), piglets in control group were fed basal diet, while the treatment group received basal diet supplemented with 120 mg/kg CS. Piglets were weaned on D35 in both groups. Six piglets from each group (n = 6) were slaughtered on D28 (one week before weaning), D35(weaning), D36.5, D38, D42, and D45 (36 h, 72 h,one week and 10 d after weaning), respectively. Semiquantitative RT-PCR was performed todetermine the levels of H+-K+-ATPase mRNA in gastric mucosa. H+-K+-ATPase activity in gastric mucosa homogenate was also determined. Gastric mucosal epithelial cells from piglets through primary cultures were used to further elucidate the effect of CS on expression and activity of H+-K+-ATPase in vivo. Cells were treated for 20 h with 0.001,0.01, and 0.1 mg/mL of CS (n = 4), respectively. The mRNA expression of H+-K+-ATPase and somatostatin (SS)as well as the H+-K+-ATPase activity were determined.RESULTS: in vivo, both mRNA expression and activity of H+-K+-ATPase in gastric mucosa of control group exhibited a trend to increase from D28 to D45, reaching a peak on D45, but did not show significant age differences. Furthermore, neither the mRNA expression nor the activity of H+-K+-ATPase was affected significantly by weaning. CS increased the mRNA expression of H+-K+-ATPase by 73%, 53%, 30% and 39% on D28(P = 0.014), D35 (P = 0.017), D42 (P = 0.013) and D45(P = 0.046), respectively. In accordance with the mRNA expression, H+-K+-ATPase activities were significantly higher in treatment group than in control group on D35(P = 0.043) and D45 (P = 0.040). In vivo, CS exhibited a dose-dependent effect on mRNA expression and activity of H+-K+-ATPase. Both H+-K+-ATPase mRNA expression and activity in gastric mucosal epithelial cells were significantly elevated after 20 h of exposure to the moderate (H+-K+-ATPase expression: P=0.03; H+-K+-ATPase activity: P = 0.014) and high concentrations (H+-K+-ATPase expression: P=0.017; H+-K+-ATPase activity:P = 0.022) of CS. Significant increases in SS mRNA expression were observed to accompany the elevation of H+-K+-ATPase expression and activity induced by the moderate (P = 0.024) and high concentrations (P = 0.022) of CS. Low concentration of CS exerted no effects either on expression and activity of H+-K+-ATPase or on SS mRNA expression in cultured gastric mucosal epithelial cells.CONCLUSION: No significant changes are observed in mRNA expression and activity of H+-K+-ATPase in gastric mucosa of piglets around weaning from D28 to D45. CS increases expression and activity of gastric H+-K+-ATPase in vivo and in vivo. SS is involved in mediating the effect of CS on gastric H+-K+-ATPase expression and activity in weaning piglets.展开更多
The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic f...The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic field applied to various industries.The current study has been enriched with additional consideration of slip flow,thermal radiation,viscous dissipation,Joulian dissipation and internal heating.In view of augmentation of thermal conductivity of nanolubricant,a new micro-nano-convection model namely Patel model has been invoked.The specialty of this model involves the effects of specific surface area and nano-convection due to Brownian motion of nanoparticles,kinetic theory based micro-convection,liquid layering and particle concentration.Suitably transformed governing equations have been solved numerically by using Runge-Kutta-Fehlberg scheme.An analysis of the present study has shown that applied magnetic field,porosity of the medium,velocity slip and inertia coefficient account for the slowing down of radial as well as tangential flow of ZnO-SAE50 oil nanolubricant,thereby leading to an improvement in velocity and thermal boundary layers.展开更多
A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating...A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.展开更多
The present paper emphasizes the peristaltic mechanism of Rabinowitsch liquid in a complaint porous channel under the influence of variable liquid properties and convective heat transfer.The effect of inclination on t...The present paper emphasizes the peristaltic mechanism of Rabinowitsch liquid in a complaint porous channel under the influence of variable liquid properties and convective heat transfer.The effect of inclination on the complaint channel walls has been taken into account.The viscosity of the liquid varies across the thickness of the complaint channel,whereas,thermal conductivity varies concerning temperature.The nonlinear governing equations are solved by using perturbation technique under the long wavelength and small Reynold’s number approximations.The expressions for axial velocity,temperature,the coefficient of heat transfer and streamlines are obtained and analyzed graphically.The above said physiological phenomena are investigated for a specific set of relevant parameters on dilatant,Newtonian and pseudoplastic fluid models.The results presented here shows that the presence of variable viscosity,porous parameter and slip parameter significantly affects the flow quantities of dilatant,Newtonian and pseudoplastic fluid models.The investigation further reveals that an increase in the value of variable viscosity and porous parameters enhances the occurrence of trapping phenomenon.Moreover,the size of trapped bolus can be eliminated with suitably adjusting the angle of inclination parameter.展开更多
The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim o...The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim of creating sustainable development.This paper examined the performance of the soil in Benin(West Africa).In this research,three objectives have been adopted in-depth on the performance characteristics of West Africans soil and aim to(i)accessing characteristics of soil types in the region;(ii)assessing the performance of these soils with 2%,3%and 5%of lime and(iii)characterizing landslide to evaluate the damage and potential instability.The methods used to examine these objectives are experimental tests according to standard French test.The particle size test,Proctor test,and Atterberg limits test which are physical tests and the mechanical tests such as dynamic penetration test,direct shear test,and oedometer test,were used to assess the first objective.The Proctor test and California bearing ratio test were examined for the second objective and geological,environmental,social and safety study of the river bank slide were evaluated for the third objective.This paper firstly reveals the unstable and stable areas in southern Benin(West Africa)with the presence of clays soil and gives an equation for predicting the unstable and stable area,and secondly shows that the proportion of percentage lime leading to the best performances varying between 2%and 3%.Finally,this paper shows that the sliding of a bank could be the consequence of the sudden receding water recorded in a valley.展开更多
In this paper, a circular three-layer flow model is proposed to study mucus transport in the airways due to air motion caused by mild forced expiration or mild coughing. Mucus is represented by four-parameter viscoela...In this paper, a circular three-layer flow model is proposed to study mucus transport in the airways due to air motion caused by mild forced expiration or mild coughing. Mucus is represented by four-parameter viscoelastic fluid, a combination of Maxwell and Voigt elements, whereas air and serous fluid are taken as Newtonian fluids (incompressible). The pressure gradient generated in the fluid layers is assumed to be given by a time- dependent function representing mild forced expiration or mild cough in the airways causing laminar flow. The effect of slip velocity at the mucus-serous interface caused by the presence of surfactant and at the top surface caused by immotile cilia are Mso taken into account. The roles of rheological properties of mucus on its transport are studied. The effect of serous fluid and its viscosity on mucus transport is also considered.展开更多
基金Supported by the National Natural Science Foundation of China, No. 30270975 National Basic Research Program of China, No. 2004CB117505
文摘AIM: To determine the in vivo andin vivo effects of cysteamine (CS) on expression and activity of H+-K+-ATPase of gastric mucosal cells in weaning piglets.METHODS: Eighteen litters of newborn Xinhuai piglets were employed in the in vivo experiment and allocated to control and treatment groups. From 12 d of age (D12), piglets in control group were fed basal diet, while the treatment group received basal diet supplemented with 120 mg/kg CS. Piglets were weaned on D35 in both groups. Six piglets from each group (n = 6) were slaughtered on D28 (one week before weaning), D35(weaning), D36.5, D38, D42, and D45 (36 h, 72 h,one week and 10 d after weaning), respectively. Semiquantitative RT-PCR was performed todetermine the levels of H+-K+-ATPase mRNA in gastric mucosa. H+-K+-ATPase activity in gastric mucosa homogenate was also determined. Gastric mucosal epithelial cells from piglets through primary cultures were used to further elucidate the effect of CS on expression and activity of H+-K+-ATPase in vivo. Cells were treated for 20 h with 0.001,0.01, and 0.1 mg/mL of CS (n = 4), respectively. The mRNA expression of H+-K+-ATPase and somatostatin (SS)as well as the H+-K+-ATPase activity were determined.RESULTS: in vivo, both mRNA expression and activity of H+-K+-ATPase in gastric mucosa of control group exhibited a trend to increase from D28 to D45, reaching a peak on D45, but did not show significant age differences. Furthermore, neither the mRNA expression nor the activity of H+-K+-ATPase was affected significantly by weaning. CS increased the mRNA expression of H+-K+-ATPase by 73%, 53%, 30% and 39% on D28(P = 0.014), D35 (P = 0.017), D42 (P = 0.013) and D45(P = 0.046), respectively. In accordance with the mRNA expression, H+-K+-ATPase activities were significantly higher in treatment group than in control group on D35(P = 0.043) and D45 (P = 0.040). In vivo, CS exhibited a dose-dependent effect on mRNA expression and activity of H+-K+-ATPase. Both H+-K+-ATPase mRNA expression and activity in gastric mucosal epithelial cells were significantly elevated after 20 h of exposure to the moderate (H+-K+-ATPase expression: P=0.03; H+-K+-ATPase activity: P = 0.014) and high concentrations (H+-K+-ATPase expression: P=0.017; H+-K+-ATPase activity:P = 0.022) of CS. Significant increases in SS mRNA expression were observed to accompany the elevation of H+-K+-ATPase expression and activity induced by the moderate (P = 0.024) and high concentrations (P = 0.022) of CS. Low concentration of CS exerted no effects either on expression and activity of H+-K+-ATPase or on SS mRNA expression in cultured gastric mucosal epithelial cells.CONCLUSION: No significant changes are observed in mRNA expression and activity of H+-K+-ATPase in gastric mucosa of piglets around weaning from D28 to D45. CS increases expression and activity of gastric H+-K+-ATPase in vivo and in vivo. SS is involved in mediating the effect of CS on gastric H+-K+-ATPase expression and activity in weaning piglets.
文摘The present article has been fine-tuned with the investigation of mixed convection Darcy-Forchheimer flow of ZnO-SAE50 oil nanolubricant over an inclined rotating disk under the influence of uniform applied magnetic field applied to various industries.The current study has been enriched with additional consideration of slip flow,thermal radiation,viscous dissipation,Joulian dissipation and internal heating.In view of augmentation of thermal conductivity of nanolubricant,a new micro-nano-convection model namely Patel model has been invoked.The specialty of this model involves the effects of specific surface area and nano-convection due to Brownian motion of nanoparticles,kinetic theory based micro-convection,liquid layering and particle concentration.Suitably transformed governing equations have been solved numerically by using Runge-Kutta-Fehlberg scheme.An analysis of the present study has shown that applied magnetic field,porosity of the medium,velocity slip and inertia coefficient account for the slowing down of radial as well as tangential flow of ZnO-SAE50 oil nanolubricant,thereby leading to an improvement in velocity and thermal boundary layers.
基金Projects(52174092,51904290)supported by the National Natural Science Foundation,ChinaProject(BK20220157)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(232102321009)supported by Henan Province Science and Technology Key Project,ChinaProject(2022YCPY0202)supported by Fundamental Research Funds for the Central Universities,China。
文摘A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters.This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads,investigating the shear behaviors of joints across varying initial normal loads,normal loading frequencies,and normal loading amplitudes.Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes.Dynamic normal loading can either increase or decrease shear strength,while this study demonstrates that higher frequencies lead to enhanced friction.Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient(JRC)values of joint surfaces after shearing.Positive correlations existed between frictional energy dissipation and peak shear forces,while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis.This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.
文摘The present paper emphasizes the peristaltic mechanism of Rabinowitsch liquid in a complaint porous channel under the influence of variable liquid properties and convective heat transfer.The effect of inclination on the complaint channel walls has been taken into account.The viscosity of the liquid varies across the thickness of the complaint channel,whereas,thermal conductivity varies concerning temperature.The nonlinear governing equations are solved by using perturbation technique under the long wavelength and small Reynold’s number approximations.The expressions for axial velocity,temperature,the coefficient of heat transfer and streamlines are obtained and analyzed graphically.The above said physiological phenomena are investigated for a specific set of relevant parameters on dilatant,Newtonian and pseudoplastic fluid models.The results presented here shows that the presence of variable viscosity,porous parameter and slip parameter significantly affects the flow quantities of dilatant,Newtonian and pseudoplastic fluid models.The investigation further reveals that an increase in the value of variable viscosity and porous parameters enhances the occurrence of trapping phenomenon.Moreover,the size of trapped bolus can be eliminated with suitably adjusting the angle of inclination parameter.
基金Project(41627801)supported by the National Major Scientific Instruments Development Project of ChinaProject(41430634)supported by the State Key Program of National Natural Science Foundation of China+1 种基金Project(2016YJ004)supported by the Opening Fund for Innovation Platform of ChinaProject(2016G002-F)supported by the Technology Research and Development Plan Program of China Railway Corporation
文摘The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim of creating sustainable development.This paper examined the performance of the soil in Benin(West Africa).In this research,three objectives have been adopted in-depth on the performance characteristics of West Africans soil and aim to(i)accessing characteristics of soil types in the region;(ii)assessing the performance of these soils with 2%,3%and 5%of lime and(iii)characterizing landslide to evaluate the damage and potential instability.The methods used to examine these objectives are experimental tests according to standard French test.The particle size test,Proctor test,and Atterberg limits test which are physical tests and the mechanical tests such as dynamic penetration test,direct shear test,and oedometer test,were used to assess the first objective.The Proctor test and California bearing ratio test were examined for the second objective and geological,environmental,social and safety study of the river bank slide were evaluated for the third objective.This paper firstly reveals the unstable and stable areas in southern Benin(West Africa)with the presence of clays soil and gives an equation for predicting the unstable and stable area,and secondly shows that the proportion of percentage lime leading to the best performances varying between 2%and 3%.Finally,this paper shows that the sliding of a bank could be the consequence of the sudden receding water recorded in a valley.
文摘In this paper, a circular three-layer flow model is proposed to study mucus transport in the airways due to air motion caused by mild forced expiration or mild coughing. Mucus is represented by four-parameter viscoelastic fluid, a combination of Maxwell and Voigt elements, whereas air and serous fluid are taken as Newtonian fluids (incompressible). The pressure gradient generated in the fluid layers is assumed to be given by a time- dependent function representing mild forced expiration or mild cough in the airways causing laminar flow. The effect of slip velocity at the mucus-serous interface caused by the presence of surfactant and at the top surface caused by immotile cilia are Mso taken into account. The roles of rheological properties of mucus on its transport are studied. The effect of serous fluid and its viscosity on mucus transport is also considered.