The relationships within Drosophila melanogaster species group are controversial from morphology, chromosomes and DNA sequences. This study utilises a molecular approach aimed at uncovering the phylogenetic relationsh...The relationships within Drosophila melanogaster species group are controversial from morphology, chromosomes and DNA sequences. This study utilises a molecular approach aimed at uncovering the phylogenetic relationships among 33 taxa representing 8 subgroups of D. melanogaster species groups. Mitocondrial ND4L-ND4 was sequenced in the all 8 subgroups covering a wide geographic area. MP and Bayesian analysis produced an identical tree topology with relatively strong support in most nodes. It reveals that the melanogaster species group clustered in three main lineages:1)montium subgroup; 2) ananassae subgroup; 3) Oriental subgroups ( melanogaster, ficsphila, eugracilis, elegans, syzukii and takahashii). The montium subgroup branched off first, followed by the ananassae subgroup. In the third lineage, melanogaster is the most divergent subgroup followed by ficsphila, eugracilis, elegans in that order. The suzukii and takahashii sister subgroups are the last to branch off.展开更多
We used the conditional nonlinear optimal perturbation(CNOP) method to explore the optimal precursor of the transition from Kuroshio large meander(LM) to straight path within a barotropic inflowoutflow model,and found...We used the conditional nonlinear optimal perturbation(CNOP) method to explore the optimal precursor of the transition from Kuroshio large meander(LM) to straight path within a barotropic inflowoutflow model,and found that large amplitudes of the optimal precursor are mainly located in the east of Kyushu,which implies that perturbations in the region are important for the transition from LM to straight path.Furthermore,we investigated the transition processes caused by the optimal precursor,and found that these processes could be divided into three stages.In the first stage,a cyclonic eddy is advected to the formation region of the Kuroshio large meander,which enhances the LM path and causes a cyclonic eddy to shed from the Kuroshio mainstream.This process causes the LM path to change into a small meander path.Subsequently,the small meander is maintained for a period because the vorticity advection is balanced by the beta effect in the second stage.In the third stage,the small meander weakens and the straight path ultimately forms.The positive vorticity advecting downstream is responsible for this process.The exploration of the optimal precursor will conduce to improve the prediction of the transition processes from LM path to straight path,and its spatial structure can be used to guide Kuroshio targeted observation studies.展开更多
We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present pap...In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.展开更多
文摘The relationships within Drosophila melanogaster species group are controversial from morphology, chromosomes and DNA sequences. This study utilises a molecular approach aimed at uncovering the phylogenetic relationships among 33 taxa representing 8 subgroups of D. melanogaster species groups. Mitocondrial ND4L-ND4 was sequenced in the all 8 subgroups covering a wide geographic area. MP and Bayesian analysis produced an identical tree topology with relatively strong support in most nodes. It reveals that the melanogaster species group clustered in three main lineages:1)montium subgroup; 2) ananassae subgroup; 3) Oriental subgroups ( melanogaster, ficsphila, eugracilis, elegans, syzukii and takahashii). The montium subgroup branched off first, followed by the ananassae subgroup. In the third lineage, melanogaster is the most divergent subgroup followed by ficsphila, eugracilis, elegans in that order. The suzukii and takahashii sister subgroups are the last to branch off.
基金Supported by the National Natural Science Foundation of China(No.41230420)the National Basic Research Program of China(973 Program)(No.2012CB417403)+2 种基金the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao(No.11-1-4-95-jch)the Open Fund of LASG,Institute of Atmospheric Physics,Chinese Academy of Sciences
文摘We used the conditional nonlinear optimal perturbation(CNOP) method to explore the optimal precursor of the transition from Kuroshio large meander(LM) to straight path within a barotropic inflowoutflow model,and found that large amplitudes of the optimal precursor are mainly located in the east of Kyushu,which implies that perturbations in the region are important for the transition from LM to straight path.Furthermore,we investigated the transition processes caused by the optimal precursor,and found that these processes could be divided into three stages.In the first stage,a cyclonic eddy is advected to the formation region of the Kuroshio large meander,which enhances the LM path and causes a cyclonic eddy to shed from the Kuroshio mainstream.This process causes the LM path to change into a small meander path.Subsequently,the small meander is maintained for a period because the vorticity advection is balanced by the beta effect in the second stage.In the third stage,the small meander weakens and the straight path ultimately forms.The positive vorticity advecting downstream is responsible for this process.The exploration of the optimal precursor will conduce to improve the prediction of the transition processes from LM path to straight path,and its spatial structure can be used to guide Kuroshio targeted observation studies.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
基金Supported by National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helieities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.