We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
The effective temperature of the solar photosphere is usually obtained according to the solar constant, based on the Stefan-Boltzmann law. However its temperature distribution is not homogeneous. A hopeful way to obta...The effective temperature of the solar photosphere is usually obtained according to the solar constant, based on the Stefan-Boltzmann law. However its temperature distribution is not homogeneous. A hopeful way to obtain the area-temperature distribution of the solar photosphere is to solve the Black-body Radiation Inversion (BRI) problem. In this paper, a new practical solution method for BRI is developed. The theoretical analysis and numerical calculations show the low-temperature distribution difficulty of BRI is solved by this new method. Then the area-temperature distribution of the solar photosphere is obtained, according to the measured absolute solar spectral irradiance. It is the first realization of BRI for a real system after almost three decades of efforts. The results are comparable to that from the Stefan-Boltzmann law.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
基金supported by the National Natural Science Foundation of China (Grand Nos. 10675031, 10375012 and 19975009)supported in part by the Department of Education of Zhejiang Province (Grant No. Y200906911)
文摘The effective temperature of the solar photosphere is usually obtained according to the solar constant, based on the Stefan-Boltzmann law. However its temperature distribution is not homogeneous. A hopeful way to obtain the area-temperature distribution of the solar photosphere is to solve the Black-body Radiation Inversion (BRI) problem. In this paper, a new practical solution method for BRI is developed. The theoretical analysis and numerical calculations show the low-temperature distribution difficulty of BRI is solved by this new method. Then the area-temperature distribution of the solar photosphere is obtained, according to the measured absolute solar spectral irradiance. It is the first realization of BRI for a real system after almost three decades of efforts. The results are comparable to that from the Stefan-Boltzmann law.