A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-cap...A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-capillary porosity and capillary porosity(NCP/CP),and the generalized soil structure index(GSSI) were measured for Fraxinus mandshurica,Larix gmelini,Pinus sylvestris var.mongolica,and Picea koraiensis plantations as well as the abandoned land(as control) adjacent to the forests in typical black soil region.Results show that at soil depth of 0–30cm,the soil bulk density of F.mandshurica forest and L.gmelini forest was lower than that of P.sylvestris var.mongolica forest and P.koraiensis forest,with the relative decrease of 8.04%–11.01%.The soil bulk density of L.gmelini forest was significantly different from that of the P.sylvestris var.mongolica forest and P.koraiensis forest.The NCP/CP values of the four types of plantations were all higher(59.75%–128.82% relatively) than that of abandoned land(p〈0.05),indicating that the soil aeration and permeability under forest were enhanced,especially under L.gmelini forest.GSSI values of the four types of forests were also relatively higher(2.98%–4.36%) than abandoned land(p〈0.05),indicating that those soil and water conservation forests,especially the F.mandshurica forest and P.koraiensis forest,can promote soil condition to approximate ideal soil structure.The result of this study can provide theoretical basis for scientifically evaluating the effects of vegetation restoration on soil quality in typical black soil region.展开更多
Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative s...Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.展开更多
Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. A...Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).展开更多
The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (...The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The ob- jective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion con- trol in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 em deeper than those in MP soil, respectively. The results of morphol- ogic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.展开更多
Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil polluti...Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.展开更多
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs an...A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg^-1 soil). Results indicated that plant growth of the two cultivars was not advérsely affected at soil Zn level ≤ 8 mmol kg^-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 μg g^-1 in Aris and 583.9 μg g^-1 in Tede in response to 16 mmol Zn kg^-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg^-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.展开更多
Electric fertilizer, i. e. exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after i...Electric fertilizer, i. e. exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after inorganic fertilizer and organic fertilizer. For the purpose of studying the changes of physical and chemical properties of soil after exerting electric field, five treatments with different applications of chemical fertilizer were arranged on the black soil in Yushu City of Jilin Province by randomized block method, and electric field was exerted on plants every ten days during the growing season. Through sample analysis the paper arrives at following conclusions: 1) Exerting electric field can make soil′s granular structure increase, bulk density decrease, moisture capacity increase, thus improving the perviousness of soil. 2) Exerting electric field can make microorganism′s number increase and activity strengthen, thus activating nutrient and increasing organic matter content. 3) Exerting electric field with 0.1A medium has the best effect. So the chemical fertilizer can be saved. Therefore, we can say that the application of electric fertilizer is favorable for decreasing chemical poison, improving soil, relaxing the contradiction between the supply and demand of chemical fertilizer, and decreasing production cost of agriculture and forestry.展开更多
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different...In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.展开更多
The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and im...The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra- and inter- aggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 era. While under CT system, more inter-aggregate pores and fewer intra- aggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where maeroporosity decreased significantly and a plow pan was evident. The Ks values of NT weresignificantly lower at o-5 cm but significantly higher at 20-95 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion.展开更多
As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious so...As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to ana-lyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were col-lected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corre-sponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic mat-ter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount be-cause it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the sta-bility is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.展开更多
An incubation experiment was carried out in laboratory to study the effect of temperature, moisture, phosphorus, organic matter, cropping and previous elemental sulfur application on elemental sulfur oxidation in four...An incubation experiment was carried out in laboratory to study the effect of temperature, moisture, phosphorus, organic matter, cropping and previous elemental sulfur application on elemental sulfur oxidation in four selected soils, fluvo-aquic soil, black soil, yellow-brown soil and red soil. In all the soils tested, sulfur oxidation rate was influenced by temperature and the temperature coefficient (Q10) values at the range from 10 to 30 ℃ were 4.41, 4.05, 6.19 and 3.71 for the four soils, respectively. The rate of sulfur oxidation was parabolically related to soil Water content. The optimum moisture content for the maximum oxidation rate was different among soils. Phosphorus increased the oxidation rate of elemental sulfur by 57.7%, 33.1%, 21.7% and 26.4% for the above four soils, respectively, compared with the control (no phosphorus applied). Organic material of corn straw which was ground and passed through a 0.5-mm sieve also increased the oxidation rate of elemental sulfur in the four soils by 59.8%, 7.8%, 39.2% and 540.4%, respectively. Elemental sulfur which was applied previously to soils significantly enhanced the oxidation of elemental sulfur subsequently added and increased sulfur-oxidizing populations such as autotrophic elemental sulfur oxidizers with pH optimum 6.8, autotrophic thiosulfate oxidizers with pH optimum 6.8, heterotrophic thiosulfate oxidizers and heterotrophic sulfate producers. Cropping had little effect on elemental sulfur-oxidizing potentiality of soils.展开更多
In order to generate scientifically-based comparative information to improve fertilization efficiency and reduce nutrient loss, 610 samples of 122 soil profiles were collected at the 0–60 cm depth to compare soil nut...In order to generate scientifically-based comparative information to improve fertilization efficiency and reduce nutrient loss, 610 samples of 122 soil profiles were collected at the 0–60 cm depth to compare soil nutrient contents including soil organic matter(SOM), total nitrogen(TN), total phosphorus(TP), available phosphorus(AP), and available potassium(AK) among different slope positions in a Mollisol farmland area of Northeast China. The contents of SOM and TN typically decreased with increased soil depth at back and bottom slope. Soil loss and deposition tended to decrease SOM and TN at the 0–20 cm soil depth on both the back slope and the slope bottom. The TP firstly decreased from 0–20 cm to 30–40 cm, and then not constantly increased at the back slope and the bottom slope. Due to the characteristics of soil nutrients and crop absorption, the contents of both AP and AK were typically the highest at the summit, followed by the slope bottom and the back slope in the 0–20 cm layer. Generally, in order to sustain the high soil productivity and protect the environment, attention should be paid to soil conservation on back slope; in addition, additional N and P fertilizer is necessary on the back slope.展开更多
Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but ...Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.展开更多
The Malayan Night Heron (Gorsachius melanolophus) inhabits a range of tropical and subtropical zones in South,Southeast and East Asia.As this heron breeds singularly in dense forests,its detailed ecology is not well k...The Malayan Night Heron (Gorsachius melanolophus) inhabits a range of tropical and subtropical zones in South,Southeast and East Asia.As this heron breeds singularly in dense forests,its detailed ecology is not well known and only piecemeal information on its diet is available.Thus,we quantitatively estimated its diet menu with an analysis of pellets and stomach contents in the subtropical Yaeyama Islands of southern Japan.The results showed that the heron frequently foraged on land snails,arachnids,freshwater crabs and insects;no fish were detected.Although the earthworm was believed to be a primary dietary source of this species,it was not detected in our results,as it does not remain in pellets due to its high digestibility.This indicated that this bird dominantly depends on soil animals that inhabit humid forest floors.While the heron does not directly utilize aquatic habitats,they likely prefer moist forests caused by watery environments such as streams and swamps.Wet forests should be conserved for maintaining populations of this heron species.展开更多
Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region ...Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available. Thus, this study explores the relationships between gully erosion, gully filling and soil parameters. Two sets of soil samples were collected in the field at: (1) 72 sample points in the gully erosion study area, 60 sample points in the ephemeral and classical gully erosion area (3,518 m2), 12 sample points in the deposition zone (443 m2), (2)1o reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed. All soil samples were analyzed for gravel content (GC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area. The interpolated soil property values in gully eroded study area were compared with these polynomial curves, respectively, and then, changes of soil property values were analyzed. Gully erosion caused an increase in GC and a decrease in SOM, TN, AN, AP and AK. The change of GC, SOM, TN, AN, AP, AK was 8.8%, -9.04 g kg-1, -0.92 g kg-1, -62.28 mg kg-1, -29.61 mg kg% -79.68 mg kg-1. The soil property values in the study area were below optimal values. Thus, we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation. Soil degradation area was 0.65 % of the cultivated land. In addition, it was proved that gully filling were an improper soil and water conservation measure, which seems to exacerbate the problem. Thus, it is suggested that soil where soil is deep is moved to fill the gully, and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.展开更多
The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climati...The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climatic condition and soil characteristics in human modified landscape. Along the latitudinal gradient, soil samples were collected from north (Hailun) to south (Gongzhuling) down to a depth of 100 cm with intervals of 030, 20-40, 40-60, 60-80, and 80-100 cm. The nematode abundance and taxonomic diversity (generic richness) were lower at Hailun than at other sites, and higher values of evenness were observed at Hailun and Harbin than at Dehui and Gongzhuling. Nematode faunal analysis revealed that soil food web at Hailun was sueeessionally more mature or structured, and the environment little disturbed, while at Harbin and Gongzhuling, the soil food web was degraded with stressed environment. The environmental variables relevant in explaining the patterns of nematode distribution and diversity in phaeozem agroecosystems, using canonical correspondence analysis (CCA), were the mean annual temperature, total nitrogen, electrical conductivity, mean annual precipitation, and other soil properties. Among these variables, the mean annual temperature was a relatively important factor, which could explain 29.05% of the variations in nematode composition.展开更多
The aim of the study was to determine the effect of soil fertilizers, used on the background of NPK fertilization on the productivity of Lolium perenne and Lolium multiflorum in different time of harvest. In 2012-2013...The aim of the study was to determine the effect of soil fertilizers, used on the background of NPK fertilization on the productivity of Lolium perenne and Lolium multiflorum in different time of harvest. In 2012-2013 the following species and varieties of forage grasses: Lolium perenne and Lolium multiflorum were cultivated. It was the fallowing experimental subjects: K-control (without fertilization and fertilizer), NPK (N-150 kg hal as a 34% ammonium nitrate, P-80 kg P2O5 ha-1, K-120 kg K20 ha-1), UG-UGmax bio-preparation, EU-Eco bio-preparation (fertilizer), HA-Humus Active as bio-preparation.展开更多
Seven organophosphoric acid triesters (OPEs) and eight polycyclic aromatic hydrocarbons (PAHs) in black cicadas were measured to determine the concentration levels and to investigate how the cicadas are affected b...Seven organophosphoric acid triesters (OPEs) and eight polycyclic aromatic hydrocarbons (PAHs) in black cicadas were measured to determine the concentration levels and to investigate how the cicadas are affected by soil contamination. Adult cicadas, nymphal exoskeletons, and soils were sampled in Higashi Osaka, Japan. Four OPEs and six PAHs were detected in the adult cicadas. The total concentrations of OPEs and PAHs ranged from 27.2 ng/g to 824 ng/g and from 4.30 ng/g to 270 ng/g, respectively. Four OPEs and five PAHs were detected in the nymphal exoskeletons. The total concentrations of OPEs and PAHs ranged from 184 ng/g to 1830 ng/g and from 40.3 ng/g to 970 ng/g, respectively. In the soils, three OPEs and six PAHs were detected at the same concentration levels as those detected in the adult cicadas. Significant correlations were observed in the micropollutant concentrations between soils and adult cicadas, and between soils and nymphal exoskeletons. This trend indicates that black cicadas accumulate OPEs and PAHs from contaminated soils.展开更多
基金supported by National Natural Science Foundation of China (No 30872068)the Science and Technology Key Scientific Project of Heilongjiang Province (GA06B302-3)Fund of Thesis for Post Graduated Student of NEFU(GRAM09)
文摘A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-capillary porosity and capillary porosity(NCP/CP),and the generalized soil structure index(GSSI) were measured for Fraxinus mandshurica,Larix gmelini,Pinus sylvestris var.mongolica,and Picea koraiensis plantations as well as the abandoned land(as control) adjacent to the forests in typical black soil region.Results show that at soil depth of 0–30cm,the soil bulk density of F.mandshurica forest and L.gmelini forest was lower than that of P.sylvestris var.mongolica forest and P.koraiensis forest,with the relative decrease of 8.04%–11.01%.The soil bulk density of L.gmelini forest was significantly different from that of the P.sylvestris var.mongolica forest and P.koraiensis forest.The NCP/CP values of the four types of plantations were all higher(59.75%–128.82% relatively) than that of abandoned land(p〈0.05),indicating that the soil aeration and permeability under forest were enhanced,especially under L.gmelini forest.GSSI values of the four types of forests were also relatively higher(2.98%–4.36%) than abandoned land(p〈0.05),indicating that those soil and water conservation forests,especially the F.mandshurica forest and P.koraiensis forest,can promote soil condition to approximate ideal soil structure.The result of this study can provide theoretical basis for scientifically evaluating the effects of vegetation restoration on soil quality in typical black soil region.
基金the Chinese Academy of Sciences (Nos.KZCX2-YW-407 and KZCX2-413)the Institute of Applied Ecology,Chinese Academy of Sciences.
文摘Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.
基金Project (No. G1999011809) supported by the National Key Basic Research Support Foundation (NKBRSF) of China.
文摘Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).
基金Under the auspices of National Natural Science Foundation of China(No.31170483)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences(No.KZCX2-EW-QN307)Foundation of Excellent Young Talents in Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.C08Y13)
文摘The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The ob- jective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion con- trol in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 em deeper than those in MP soil, respectively. The results of morphol- ogic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.
文摘Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.
基金Project supported by the National Natural Science Foundation of China (No. 20477032).
文摘A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg^-1 soil). Results indicated that plant growth of the two cultivars was not advérsely affected at soil Zn level ≤ 8 mmol kg^-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 μg g^-1 in Aris and 583.9 μg g^-1 in Tede in response to 16 mmol Zn kg^-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg^-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.
文摘Electric fertilizer, i. e. exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after inorganic fertilizer and organic fertilizer. For the purpose of studying the changes of physical and chemical properties of soil after exerting electric field, five treatments with different applications of chemical fertilizer were arranged on the black soil in Yushu City of Jilin Province by randomized block method, and electric field was exerted on plants every ten days during the growing season. Through sample analysis the paper arrives at following conclusions: 1) Exerting electric field can make soil′s granular structure increase, bulk density decrease, moisture capacity increase, thus improving the perviousness of soil. 2) Exerting electric field can make microorganism′s number increase and activity strengthen, thus activating nutrient and increasing organic matter content. 3) Exerting electric field with 0.1A medium has the best effect. So the chemical fertilizer can be saved. Therefore, we can say that the application of electric fertilizer is favorable for decreasing chemical poison, improving soil, relaxing the contradiction between the supply and demand of chemical fertilizer, and decreasing production cost of agriculture and forestry.
基金Under the auspices of National Natural Science Foundation of China (No. 30470340)
文摘In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.
基金funded by the National Science and Technology Supporting Programs of China under Grants No. 2006BAD15B01 and 2006BAD02A14
文摘The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra- and inter- aggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 era. While under CT system, more inter-aggregate pores and fewer intra- aggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where maeroporosity decreased significantly and a plow pan was evident. The Ks values of NT weresignificantly lower at o-5 cm but significantly higher at 20-95 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion.
基金Under the auspices of National Natural Science Foundation of China ( No. 40471084)Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (No. 066U0104SZ)State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (No. 10501-173)
文摘As the first event of soil erosion, rain splash erosion supplies materials for subsequent transportation and en-trainment. The Loess Plateau, the southern hilly region and the Northeast China are subject to serious soil and water loss; however, the characteristics of rain splash erosion in those regions are still unclear. The objectives of the study are to ana-lyze the characteristics of splash erosion on loess soil, red soil, purple soil and black soil, and to discuss the relationship between splash erosion and soil properties. Soil samples spatially distributed in the abovementioned regions were col-lected and underwent simulated rainfalls at a high intensity of 1.2mm/min, lasting for 5, 10, 15, and 20min, respectively. Rain splash and soil crust development were analyzed. It shows that black soil sample from Heilongjiang Province corre-sponds to the minimum splash erosion amount because it has high aggregate content, aggregate stability and organic mat-ter content. Loess soil sample from Inner Mongolia corresponds to the maximum splash erosion amount because it has high content of sand particles. Loess soil sample from Shanxi Province has relatively lower splash erosion amount be-cause it has high silt particle content and low aggregate stability easily to be disrupted under rainfalls with high intensity. Although aggregate contents of red soil and purple soil samples from Hubei and Guangdong provinces are high, the sta-bility is weak and prone to be disrupted, so the splash erosion amount is medium. Splash rate which fluctuates over time is observed because soil crust development follows a cycling processes of formation and disruption. In addition, there are two locations of soil crust development, one appears at the surface, and the other occurs at the subsurface.
文摘An incubation experiment was carried out in laboratory to study the effect of temperature, moisture, phosphorus, organic matter, cropping and previous elemental sulfur application on elemental sulfur oxidation in four selected soils, fluvo-aquic soil, black soil, yellow-brown soil and red soil. In all the soils tested, sulfur oxidation rate was influenced by temperature and the temperature coefficient (Q10) values at the range from 10 to 30 ℃ were 4.41, 4.05, 6.19 and 3.71 for the four soils, respectively. The rate of sulfur oxidation was parabolically related to soil Water content. The optimum moisture content for the maximum oxidation rate was different among soils. Phosphorus increased the oxidation rate of elemental sulfur by 57.7%, 33.1%, 21.7% and 26.4% for the above four soils, respectively, compared with the control (no phosphorus applied). Organic material of corn straw which was ground and passed through a 0.5-mm sieve also increased the oxidation rate of elemental sulfur in the four soils by 59.8%, 7.8%, 39.2% and 540.4%, respectively. Elemental sulfur which was applied previously to soils significantly enhanced the oxidation of elemental sulfur subsequently added and increased sulfur-oxidizing populations such as autotrophic elemental sulfur oxidizers with pH optimum 6.8, autotrophic thiosulfate oxidizers with pH optimum 6.8, heterotrophic thiosulfate oxidizers and heterotrophic sulfate producers. Cropping had little effect on elemental sulfur-oxidizing potentiality of soils.
基金Under the auspices of Science and Technology Research Projects of Education Department of Heilongjiang Province,China(No.12521010)
文摘In order to generate scientifically-based comparative information to improve fertilization efficiency and reduce nutrient loss, 610 samples of 122 soil profiles were collected at the 0–60 cm depth to compare soil nutrient contents including soil organic matter(SOM), total nitrogen(TN), total phosphorus(TP), available phosphorus(AP), and available potassium(AK) among different slope positions in a Mollisol farmland area of Northeast China. The contents of SOM and TN typically decreased with increased soil depth at back and bottom slope. Soil loss and deposition tended to decrease SOM and TN at the 0–20 cm soil depth on both the back slope and the slope bottom. The TP firstly decreased from 0–20 cm to 30–40 cm, and then not constantly increased at the back slope and the bottom slope. Due to the characteristics of soil nutrients and crop absorption, the contents of both AP and AK were typically the highest at the summit, followed by the slope bottom and the back slope in the 0–20 cm layer. Generally, in order to sustain the high soil productivity and protect the environment, attention should be paid to soil conservation on back slope; in addition, additional N and P fertilizer is necessary on the back slope.
文摘Fire is an important ecological factor and what constitutes appropriate fire management is much debated in the US and elsewhere. The role of fire as a source of greenhouse gases has been intensively investigated, but less is known about the production rate of the solid black carbon residue from fires. Black carbon accumulates in soil as it has longer turnover times than plant residues. To understand the significance of black carbon production during wildfire, we quantified black carbon using hydropyrolysis in O and A horizons before and after a prescribed bum at four sites in the New Jersey Pine Barrens forest in the North-Eastern US. Black carbon was found in both O- and A-horizons at all investigated sites, stocks in the range of 61.31-168.15 g m^-2 in the O-horizon and 169.59-425.25 g m^-2 in the A-horizon. Total black carbon stocks did not increase following the fire suggesting that either black carbon production in fires may be small compared to the variability, or that equivalent amounts of black carbon formed in previous fires may have been consumed in the fire. The study raises questions about how black carbon production and consumption in ftres can be quantified separately.
文摘The Malayan Night Heron (Gorsachius melanolophus) inhabits a range of tropical and subtropical zones in South,Southeast and East Asia.As this heron breeds singularly in dense forests,its detailed ecology is not well known and only piecemeal information on its diet is available.Thus,we quantitatively estimated its diet menu with an analysis of pellets and stomach contents in the subtropical Yaeyama Islands of southern Japan.The results showed that the heron frequently foraged on land snails,arachnids,freshwater crabs and insects;no fish were detected.Although the earthworm was believed to be a primary dietary source of this species,it was not detected in our results,as it does not remain in pellets due to its high digestibility.This indicated that this bird dominantly depends on soil animals that inhabit humid forest floors.While the heron does not directly utilize aquatic habitats,they likely prefer moist forests caused by watery environments such as streams and swamps.Wet forests should be conserved for maintaining populations of this heron species.
基金supported by National Basic Research Program of China (973 Program) (Grant no. 2007CB407204)Innovation project of Changjiang River Scientific Research Institute (CKSF2012052/TB)basic scientific research project of Changjiang River Scientific Research Institute (CKSF2011008)
文摘Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available. Thus, this study explores the relationships between gully erosion, gully filling and soil parameters. Two sets of soil samples were collected in the field at: (1) 72 sample points in the gully erosion study area, 60 sample points in the ephemeral and classical gully erosion area (3,518 m2), 12 sample points in the deposition zone (443 m2), (2)1o reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed. All soil samples were analyzed for gravel content (GC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area. The interpolated soil property values in gully eroded study area were compared with these polynomial curves, respectively, and then, changes of soil property values were analyzed. Gully erosion caused an increase in GC and a decrease in SOM, TN, AN, AP and AK. The change of GC, SOM, TN, AN, AP, AK was 8.8%, -9.04 g kg-1, -0.92 g kg-1, -62.28 mg kg-1, -29.61 mg kg% -79.68 mg kg-1. The soil property values in the study area were below optimal values. Thus, we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation. Soil degradation area was 0.65 % of the cultivated land. In addition, it was proved that gully filling were an improper soil and water conservation measure, which seems to exacerbate the problem. Thus, it is suggested that soil where soil is deep is moved to fill the gully, and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.
基金supported by the National Key Basic Research Support Foundation of China (No.2005CB121105)the National Natural Science Foundation of China (No.30670379)
文摘The diversity and distribution patterns of soil nematode communities in phaeozem agroecosystems of Northeast China were assessed to evaluate nematode taxonomic diversity and functional diversity in relation to climatic condition and soil characteristics in human modified landscape. Along the latitudinal gradient, soil samples were collected from north (Hailun) to south (Gongzhuling) down to a depth of 100 cm with intervals of 030, 20-40, 40-60, 60-80, and 80-100 cm. The nematode abundance and taxonomic diversity (generic richness) were lower at Hailun than at other sites, and higher values of evenness were observed at Hailun and Harbin than at Dehui and Gongzhuling. Nematode faunal analysis revealed that soil food web at Hailun was sueeessionally more mature or structured, and the environment little disturbed, while at Harbin and Gongzhuling, the soil food web was degraded with stressed environment. The environmental variables relevant in explaining the patterns of nematode distribution and diversity in phaeozem agroecosystems, using canonical correspondence analysis (CCA), were the mean annual temperature, total nitrogen, electrical conductivity, mean annual precipitation, and other soil properties. Among these variables, the mean annual temperature was a relatively important factor, which could explain 29.05% of the variations in nematode composition.
文摘The aim of the study was to determine the effect of soil fertilizers, used on the background of NPK fertilization on the productivity of Lolium perenne and Lolium multiflorum in different time of harvest. In 2012-2013 the following species and varieties of forage grasses: Lolium perenne and Lolium multiflorum were cultivated. It was the fallowing experimental subjects: K-control (without fertilization and fertilizer), NPK (N-150 kg hal as a 34% ammonium nitrate, P-80 kg P2O5 ha-1, K-120 kg K20 ha-1), UG-UGmax bio-preparation, EU-Eco bio-preparation (fertilizer), HA-Humus Active as bio-preparation.
文摘Seven organophosphoric acid triesters (OPEs) and eight polycyclic aromatic hydrocarbons (PAHs) in black cicadas were measured to determine the concentration levels and to investigate how the cicadas are affected by soil contamination. Adult cicadas, nymphal exoskeletons, and soils were sampled in Higashi Osaka, Japan. Four OPEs and six PAHs were detected in the adult cicadas. The total concentrations of OPEs and PAHs ranged from 27.2 ng/g to 824 ng/g and from 4.30 ng/g to 270 ng/g, respectively. Four OPEs and five PAHs were detected in the nymphal exoskeletons. The total concentrations of OPEs and PAHs ranged from 184 ng/g to 1830 ng/g and from 40.3 ng/g to 970 ng/g, respectively. In the soils, three OPEs and six PAHs were detected at the same concentration levels as those detected in the adult cicadas. Significant correlations were observed in the micropollutant concentrations between soils and adult cicadas, and between soils and nymphal exoskeletons. This trend indicates that black cicadas accumulate OPEs and PAHs from contaminated soils.