We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi-...We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi- mations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.展开更多
We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to dece...We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.展开更多
Taking into account the Bekenstein-Hawking area law,based on the analysis of Zeng and Liu et al.that area spectrum is determined by the periodicity of an outgoing wave,we discuss on the quantization of entropy from a ...Taking into account the Bekenstein-Hawking area law,based on the analysis of Zeng and Liu et al.that area spectrum is determined by the periodicity of an outgoing wave,we discuss on the quantization of entropy from a neutral black string.In addition,applying the adiabatic invariant quantity method proposed by Majhi and Vagenas,we further verify the entropy quantum of the neutral black string.As a result,two different methods show that the quantum of entropy is △S = 2π,which is in agreement with Bekenstein's proposal.展开更多
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown t...Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.展开更多
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the se...We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.展开更多
基金Supported by the Universidad Nacional de Colombia.Project Code 2010100
文摘We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action that emerges in the low-energy of string theory, beyond semiclassical approxi- mations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.
文摘We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.
基金Supported by the Scientific Research Foundation of the Education Department of Liaoning Province under Grant No. L2011195
文摘Taking into account the Bekenstein-Hawking area law,based on the analysis of Zeng and Liu et al.that area spectrum is determined by the periodicity of an outgoing wave,we discuss on the quantization of entropy from a neutral black string.In addition,applying the adiabatic invariant quantity method proposed by Majhi and Vagenas,we further verify the entropy quantum of the neutral black string.As a result,two different methods show that the quantum of entropy is △S = 2π,which is in agreement with Bekenstein's proposal.
基金Supported by the Universidad Nacional de Colombia. Hermes Project Code 13038
文摘Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
基金Supported by the Universidad Nacional de Colombia.Hermes Project Code 17318
文摘We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.