Mitotic metaphase chromosomes of 34 species of Drosophila melanogaster species group were examined. Certain new karyotypes were described for the first time, and their evolutionary and interspecific genetic relationsh...Mitotic metaphase chromosomes of 34 species of Drosophila melanogaster species group were examined. Certain new karyotypes were described for the first time, and their evolutionary and interspecific genetic relationships among 8 subgroups of D. melanogaster species group were analyzed systematically. The results were as follows. The basic karyotype of elegans subgroup was type A. The karyotypes of eugracilis subgroup, melanogaster subgroup, and ficusphila subgroup were all type C. The karyotypes of takahashii subgroup and suzukii subgroup were both type C and type D. The montium subgroup had six kinds of karyotypes types B, C, C', D, D', and E. The ananassae subgroup had three kinds of karyotypes: types F, G, and H. Thus, the melanogaster species group was classified into five pedigrees based on the diversity of these karyotypes: 1) elegans; 2) eugracilis-melanogasterficusphila; 3) takkahashii-suzukii; 4) montium; 5) ananassae. The above-mentioned results in karyotypic evolution were consistent with those of DNA sequence analysis reported by Yang except for the elegans subgroup and this subgroup was considered as the ancestral subgroup. Karyotype analysis of the same drosophila from different isofemale lines indicated that the same Drosophila from different places showed karyotypic variation which might be due to different geographical environment and evolutionary degree or interaction between the two factors.展开更多
基金This work was supported by National Natural Sciences Foundation of China (No. 39930100) International Collaborative Project of Hubei Provincial Department of Education (No. G200610001).
文摘Mitotic metaphase chromosomes of 34 species of Drosophila melanogaster species group were examined. Certain new karyotypes were described for the first time, and their evolutionary and interspecific genetic relationships among 8 subgroups of D. melanogaster species group were analyzed systematically. The results were as follows. The basic karyotype of elegans subgroup was type A. The karyotypes of eugracilis subgroup, melanogaster subgroup, and ficusphila subgroup were all type C. The karyotypes of takahashii subgroup and suzukii subgroup were both type C and type D. The montium subgroup had six kinds of karyotypes types B, C, C', D, D', and E. The ananassae subgroup had three kinds of karyotypes: types F, G, and H. Thus, the melanogaster species group was classified into five pedigrees based on the diversity of these karyotypes: 1) elegans; 2) eugracilis-melanogasterficusphila; 3) takkahashii-suzukii; 4) montium; 5) ananassae. The above-mentioned results in karyotypic evolution were consistent with those of DNA sequence analysis reported by Yang except for the elegans subgroup and this subgroup was considered as the ancestral subgroup. Karyotype analysis of the same drosophila from different isofemale lines indicated that the same Drosophila from different places showed karyotypic variation which might be due to different geographical environment and evolutionary degree or interaction between the two factors.