Objective To investigate the possible role of apoptosis in the pathogenesis of Parkinson’s disease. Methods C- 57 BL mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), and TUNEL and flow cytom...Objective To investigate the possible role of apoptosis in the pathogenesis of Parkinson’s disease. Methods C- 57 BL mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), and TUNEL and flow cytometry were employed to detect neuronal apoptosis in the substantia nigra. Results The results of animal experiment demonstrated that the administration of MPTP 30mg/kg for 7d could induce neuronal apoptosis in the substantia nigra. The MPTP-induced nigral neuronal apoptosis could be completely prevented by pre-treatment of Eldepryl, an inhibitor of B typed monoamine oxidase (MAO-B);and partially protected by pre-treatment of Riluzole, an antagonist of excitatory amino acid receptors. Data of cell culture experiment showed that 20mmol 1-methyl-4-phenylpyridinium ion(MPP +) induced the apoptosis of pheochromocytoma(PC12 cells), whereas 20mmol MPTP did not cause PC12 cells apoptosis. Conclusion It is concluded that the apoptotic effect of MPTP in vivo on the nigral neurons may be mediated by its intermediate metabolite MPP +. The dopaminergic neuronal apoptosis in the substantia nigra may be a common pathway of various causes that lead to the onset of Parkinson’s disease.展开更多
Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (P...Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (PC12) cells, as well as the antagonism of Eldepryl against MPTP's apoptotic effect Methods Three groups of C 57 BL mice were treated with MPTP, Eldepryl plus MPTP and normal saline, respectively, for 7 days before performing TUNEL (terminal deoxyneucleotidyl transferase mediated dUTP x nick end labeling) and FACS (fluorescence activated cell sorting) analyses of neuronal apoptosis in the substantia nigra The same tests were employed in cell culture to examine apoptosis in PC12 cells treated with MPP +, MPTP or PBS Results Intraperitoneal administration of MPTP 30?mg/kg could induce nigral apoptosis, and oral use of Eldepryl prior to MPTP treatment could completely prevent the nigral apoptosis caused by MPTP MPP +, an intermediate metabolite of MPTP, could lead to the apoptosis of PC12 cells, whereas MPTP itself had no such effect on PC12 cells Conclusions The experiment indicated that the neurotoxin, MPTP, might cause the death of nigral neurons through a mechanism of apoptosis and this effect might be mediated by its bioactive intermediate metabolite MPP + Eldepryl could protect the neurotoxicity from MPTP展开更多
文摘Objective To investigate the possible role of apoptosis in the pathogenesis of Parkinson’s disease. Methods C- 57 BL mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), and TUNEL and flow cytometry were employed to detect neuronal apoptosis in the substantia nigra. Results The results of animal experiment demonstrated that the administration of MPTP 30mg/kg for 7d could induce neuronal apoptosis in the substantia nigra. The MPTP-induced nigral neuronal apoptosis could be completely prevented by pre-treatment of Eldepryl, an inhibitor of B typed monoamine oxidase (MAO-B);and partially protected by pre-treatment of Riluzole, an antagonist of excitatory amino acid receptors. Data of cell culture experiment showed that 20mmol 1-methyl-4-phenylpyridinium ion(MPP +) induced the apoptosis of pheochromocytoma(PC12 cells), whereas 20mmol MPTP did not cause PC12 cells apoptosis. Conclusion It is concluded that the apoptotic effect of MPTP in vivo on the nigral neurons may be mediated by its intermediate metabolite MPP +. The dopaminergic neuronal apoptosis in the substantia nigra may be a common pathway of various causes that lead to the onset of Parkinson’s disease.
文摘Objective To study the apoptotic effects of 1 methyl 4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) on the nigral dopaminergic neurons of mice and 1 methyl 4 phenylpyridium ion (MPP +) on pheochromocytoma (PC12) cells, as well as the antagonism of Eldepryl against MPTP's apoptotic effect Methods Three groups of C 57 BL mice were treated with MPTP, Eldepryl plus MPTP and normal saline, respectively, for 7 days before performing TUNEL (terminal deoxyneucleotidyl transferase mediated dUTP x nick end labeling) and FACS (fluorescence activated cell sorting) analyses of neuronal apoptosis in the substantia nigra The same tests were employed in cell culture to examine apoptosis in PC12 cells treated with MPP +, MPTP or PBS Results Intraperitoneal administration of MPTP 30?mg/kg could induce nigral apoptosis, and oral use of Eldepryl prior to MPTP treatment could completely prevent the nigral apoptosis caused by MPTP MPP +, an intermediate metabolite of MPTP, could lead to the apoptosis of PC12 cells, whereas MPTP itself had no such effect on PC12 cells Conclusions The experiment indicated that the neurotoxin, MPTP, might cause the death of nigral neurons through a mechanism of apoptosis and this effect might be mediated by its bioactive intermediate metabolite MPP + Eldepryl could protect the neurotoxicity from MPTP