期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于注意力机制的NewVGG16-BiGRU鼾声分类 被引量:1
1
作者 邓志平 王冬霞 +1 位作者 马晓冬 曹玉东 《计算机应用》 CSCD 北大核心 2023年第S01期276-280,共5页
针对已有的鼾声分类模型因未考虑实际睡眠时的其他声音而导致的泛化能力差、准确率较低等问题,提出一种基于注意力机制的NewVGG16双向门控循环单元(NVGG16-BiGRU-Att)算法用于鼾声识别。首先,生成每个声段的谱图,采用NVGG16网络提取语... 针对已有的鼾声分类模型因未考虑实际睡眠时的其他声音而导致的泛化能力差、准确率较低等问题,提出一种基于注意力机制的NewVGG16双向门控循环单元(NVGG16-BiGRU-Att)算法用于鼾声识别。首先,生成每个声段的谱图,采用NVGG16网络提取语谱图、梅尔(Mel)时频图和恒Q变换(CQT)时频图组成的谱图特征矩阵;其次,将提取的特征向量输入BiGRU,结合注意力机制,增加分类过程中的重要特征信息的权重,改善分类效果;最后,经过全连接层输出鼾声与非鼾声。在采集的鼾声数据集上进行实验,实验结果表明,所提算法取得了较好的分类效果,其中Mel时频图效果最优,识别准确率达到96.18%;相较于卷积神经网络(CNN)+长短期记忆(LSTM)网络、卷积CNNsLSTMs-深度神经网络(DNNs)模型,在同特征输入下,所提算法的准确率提升了0.31%~2.39%,验证了所提算法具有较好的鲁棒性,能够提升分类性能。 展开更多
关键词 鼾声分类 注意力机制 循环神经网络 双向门控循环单元 谱图特征
下载PDF
一步优化OSAHS鼾声分类算法
2
作者 余佳琪 王冬霞 +1 位作者 马晓冬 张严 《实验室研究与探索》 CAS 北大核心 2023年第7期136-140,181,共6页
针对人工标注分类阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者鼾声准确率低等不足,提出一步切割聚类的鼾声分类算法(BVCL)。该算法基于贝叶斯信息准则(BIC)对单切割点检测进行优化,实现鼾声多切割点检测和聚类,并采用语音端点检测(VAD)... 针对人工标注分类阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者鼾声准确率低等不足,提出一步切割聚类的鼾声分类算法(BVCL)。该算法基于贝叶斯信息准则(BIC)对单切割点检测进行优化,实现鼾声多切割点检测和聚类,并采用语音端点检测(VAD)技术对切割点进行快速筛选;通过改进线性判别分析(LDA)算法矩阵,构建分类回归树(CART)-LDA分类模型,实现OSAHS患者鼾声、正常鼾声和非鼾声的一步三分类,提高OSAHS患者的筛查效率,为便携式睡眠鼾声监测设备走向应用提供一种可能。以某医科大学临床夜间实录鼾声数据作为输入,仿真结果表明,该算法与鼾声两步分类法和一步分类法相比,降低算法复杂度的同时提升了分类准确率。 展开更多
关键词 鼾声分类 鼾声检测 切割聚类 一步优化分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部