A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbala...A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.展开更多
Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-lik...Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-like spatial solitons can be formed in the Kerr nonlinear media in the cylindrical symmetric geometry. It is shown by numerical simulation that these soliton profiles are stable.展开更多
Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtain...Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained.展开更多
An improved homogeneous balance principle and self-similar solutions to the cubic-quintic nonlinear Schroedinger and impose constraints on the functions describing dispersion, self-similar waves are presented.
The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equa...The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 11071209the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province under Grant No. 10KJBll0011
文摘A modified homogeneous balance method is proposed by improving some key steps in the homogeneousbalance method.Bilinear equations of some nonlinear evolution equations are derived by using the modified homogeneousbalance method.Generalized Boussinesq equation,KP equation,and mKdV equation are chosen as examples to illustrateour method.This approach is also applicable to a large variety of nonlinear evolution equations.
基金Supported by the Xianning University Foundation of Hubei Province under Grant No.2010CDB05103Xianning University Foundation under Grant No.BK001
文摘Based on homogeneous balance method, sofiton solutions to a generalized nonlinear Sehr6dinger equation (NLSE) with varying coefficients have been gotten. Our results indicate that a new family of vortex or petal-like spatial solitons can be formed in the Kerr nonlinear media in the cylindrical symmetric geometry. It is shown by numerical simulation that these soliton profiles are stable.
基金Supported by National Natural Science Foundation of China under Grant No.11071209 the Natural Science Foundation of the Higer Education Institutions of Jiangsu Province under Grant No.10KJB110011
文摘Abstract By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Bgcklund transformation (BT) for (3-k l)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained.
基金Supported by Natural Science Foundation of Zhejiang Province of China under Grant Nos.Y604106 and Y606182the Special Foundation of "University Talent Indraught Engineering" of Guangdong Province of China under Grant No.GDU2009109the Key Academic Discipline Foundation of Guangdong Shaoguan University under Gant No.KZ2009001
文摘An improved homogeneous balance principle and self-similar solutions to the cubic-quintic nonlinear Schroedinger and impose constraints on the functions describing dispersion, self-similar waves are presented.
基金Supported by National Science Foundation of China under Grant No. 2006CB921605
文摘The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.