In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of s...In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of solving(I)is also given.As a particular case,we also give a simple method of finding a system of fundamental solutions of a homogeneous system of right linear equations over a skew field.展开更多
This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kern...This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.展开更多
This paper presents a new inverse analysis approach to sensitivity analysis and material property identification in transient non-homogeneous and non-linear heat conduction Boundary Element Method (BEM) analysis based...This paper presents a new inverse analysis approach to sensitivity analysis and material property identification in transient non-homogeneous and non-linear heat conduction Boundary Element Method (BEM) analysis based on Complex Variable Differentiation Method (CVDM). In this approach, the material properties are taken as the optimization variables, and the sensitivity coefficients are computed by CVDM. The advantages of using CVDM are that the computation of partial derivatives of an implicit function is reduced to function calculation in a complex domain, and the parameter sensitivity coefficients can be determined in a more accurate way than the traditional Finite Difference Method (FDM). Based on BEM and CVDM in evaluation of the sensitivity matrix of heat flux, the parameter such as thermal conductivity can be accurately identified. Six numerical examples are given to demonstrate the potential of the proposed approach. The results indicate that the presented method is efficient for identifying the thermal conductivity with single or multiple parameters.展开更多
文摘In this paper we study a matrix equation AX+BX=C(I)over an arbitrary skew field,and give a consistency criterion of(I)and an explicit expression of general solutions of(I).A convenient,simple and practical method of solving(I)is also given.As a particular case,we also give a simple method of finding a system of fundamental solutions of a homogeneous system of right linear equations over a skew field.
基金Project supported by the National Natural Science Foundation of China (No. 10001027).
文摘This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.
基金supported by the National Natural Science Foundation of China (Grant Nos.11172055, 51206014)the Fundamental Research Funds for the Central universities (Grant Nos.DUT11ZD(G)01,DUT11LK09)
文摘This paper presents a new inverse analysis approach to sensitivity analysis and material property identification in transient non-homogeneous and non-linear heat conduction Boundary Element Method (BEM) analysis based on Complex Variable Differentiation Method (CVDM). In this approach, the material properties are taken as the optimization variables, and the sensitivity coefficients are computed by CVDM. The advantages of using CVDM are that the computation of partial derivatives of an implicit function is reduced to function calculation in a complex domain, and the parameter sensitivity coefficients can be determined in a more accurate way than the traditional Finite Difference Method (FDM). Based on BEM and CVDM in evaluation of the sensitivity matrix of heat flux, the parameter such as thermal conductivity can be accurately identified. Six numerical examples are given to demonstrate the potential of the proposed approach. The results indicate that the presented method is efficient for identifying the thermal conductivity with single or multiple parameters.