The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moo...The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.展开更多
This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kern...This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.展开更多
This paper deals with the existence of periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition. The authors consider the case that the period is irrational multiple of space length and prove tha...This paper deals with the existence of periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition. The authors consider the case that the period is irrational multiple of space length and prove that for some irrational number, zero is not the accumulation point of the spectrum of the associated linear operator. This result can be used to prove the existence of the periodic solution avoid using Nash-Moser iteration.展开更多
The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case ...The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.展开更多
基金the National Natural Science Foundation of China(No.19971023)the Heilongjiang Provincial Natural Science Foundation of China.
文摘The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.
基金Project supported by the National Natural Science Foundation of China (No. 10001027).
文摘This paper constructs several classes of new wavelet bases, which are unconditional bases for related operator spaces. Using these bases, the author analyzes non-homogeneous symbolic space OpSm1,1 and two related kernel-distribution spaces, and characterizes them in two wavelet coefficients spaces. Besides, some properties for singular integral operators are studied.
基金supported by the Zhejiang Provincial Department of Education Research Fund(No.Y201326873)
文摘This paper deals with the existence of periodic solutions of a nonhomogeneous string with Dirichlet-Neumann condition. The authors consider the case that the period is irrational multiple of space length and prove that for some irrational number, zero is not the accumulation point of the spectrum of the associated linear operator. This result can be used to prove the existence of the periodic solution avoid using Nash-Moser iteration.
文摘The authors study homogenization of some nonlinear partial differential equations of the form -div (?(hx, h2x,Duh)) =f, where a is periodic in the first two arguments and monotone in the third. In particular the case where a satisfies degenerated structure conditions is studied. It is proved that uh converges weakly in W01,1 (?) to the unique solution of a limit problem as h ? '. Moreover, explicit expressions for the limit problem are obtained.