The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.
The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions. On the basis of this estimate, improved Carleman estimates for the Stokes system an...The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions. On the basis of this estimate, improved Carleman estimates for the Stokes system and for a system of parabolic equations with a penalty term are obtained. This system can be viewed as an approximation of the Stokes system.展开更多
Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new...Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new kind of entropy solution, according to Oleinik rules, the partial boundary condition is given to assure the well-posedness of the problem. By the parabolic regularization method, the uniform estimate of the gradient is obtained, and by using Kolmogoroff 's theorem, the solvability of the equation is obtained in BV(Q_T) sense. The stability of the solutions is obtained by Kruzkov's double variables method.展开更多
基金the Foundations of Returned Overseas Chinese Education Ministry and the Key Teachers Foundation of Chongqing University.
文摘The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.
基金supported by NSF grant DMS (No. 0808130) ANR Project (No. C-QUID 06-BLAN-0052).
文摘The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions. On the basis of this estimate, improved Carleman estimates for the Stokes system and for a system of parabolic equations with a penalty term are obtained. This system can be viewed as an approximation of the Stokes system.
基金supported by the National Natural Science Foundation of China(No.11371297)the Science Foundation of Xiamen University of Technology(No.XYK201448)
文摘Consider the initial boundary value problem of the strong degenerate parabolic equation ?_(xx)u + u?_yu-?_tu = f(x, y, t, u),(x, y, t) ∈ Q_T = Ω×(0, T)with a homogeneous boundary condition. By introducing a new kind of entropy solution, according to Oleinik rules, the partial boundary condition is given to assure the well-posedness of the problem. By the parabolic regularization method, the uniform estimate of the gradient is obtained, and by using Kolmogoroff 's theorem, the solvability of the equation is obtained in BV(Q_T) sense. The stability of the solutions is obtained by Kruzkov's double variables method.