Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is pr...Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.展开更多
A mathematical model has been developed using the space engagement theory and the differential geometry for the line contact of noninvolute beveloid gears with intersecting axes with their tooth profile equations and ...A mathematical model has been developed using the space engagement theory and the differential geometry for the line contact of noninvolute beveloid gears with intersecting axes with their tooth profile equations and engagement equations established for the first time and their meshing theory analysed. It can be seen from the fact that the tooth profile equation finally derived is no longer a standard involute helicoid and standard involute beveloid gears with intersecting axes have no way to satisfy the line contact requirement. However, the noninvdute beveloid gears derived in this paper satisfy the line contact requirement very well. All these work will inevitably facilitate further investigations into gear tooth generation, stiffness, backlash and efficiency of transmission.展开更多
基金supported by the National Natural Science Foundation of China(No.51975293)Aeronautical Science Foundation of China (No. 2019ZD052010)
文摘Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.
文摘A mathematical model has been developed using the space engagement theory and the differential geometry for the line contact of noninvolute beveloid gears with intersecting axes with their tooth profile equations and engagement equations established for the first time and their meshing theory analysed. It can be seen from the fact that the tooth profile equation finally derived is no longer a standard involute helicoid and standard involute beveloid gears with intersecting axes have no way to satisfy the line contact requirement. However, the noninvdute beveloid gears derived in this paper satisfy the line contact requirement very well. All these work will inevitably facilitate further investigations into gear tooth generation, stiffness, backlash and efficiency of transmission.