A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consi...A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear's supporting stiffness, planet's bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consi...In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.展开更多
This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the p...This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the paper, based on moment equilibrium condition of a mechanic system including V-belt and a two-gear-unit of the gearbox, models for optimum calculation of the partial ratios of the V-belt and the gearbox were proposed. As the models are explicit, the partial ratios can be calculated accurately and simply.展开更多
基金Projects(NZ2013303,NZ2014201)supported by the National Natural Science Foundation of ChinaProjects(51375226,51305196,51475226)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear's supporting stiffness, planet's bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.
文摘In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.
文摘This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the paper, based on moment equilibrium condition of a mechanic system including V-belt and a two-gear-unit of the gearbox, models for optimum calculation of the partial ratios of the V-belt and the gearbox were proposed. As the models are explicit, the partial ratios can be calculated accurately and simply.