期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进EMD与FastICA—样本熵的齿轮故障特征提取方法 被引量:2
1
作者 吕同昕 《软件导刊》 2019年第8期154-158,共5页
针对齿轮常见故障及信号在传统EMD算法分解中产生的端点效应,提出一种基于改进经验模态分解(EMD)与快速独立分量分析(FastICA)-样本熵的齿轮故障特征提取方法。首先对信号进行EMD分解,得到一系列IMF分量和残余量,在此过程中通过匹配差... 针对齿轮常见故障及信号在传统EMD算法分解中产生的端点效应,提出一种基于改进经验模态分解(EMD)与快速独立分量分析(FastICA)-样本熵的齿轮故障特征提取方法。首先对信号进行EMD分解,得到一系列IMF分量和残余量,在此过程中通过匹配差别最小的极值包络线段确定端点处极值,然后从每个信号中分别选取周期性明显的分量与原始信号组成混合信号作为FastICA的输入,获得ICA计算后的分量,最后分别计算EMD分量与各独立分量的样本熵。实验结果表明,改进后的EMD算法可以有效改善端点效应问题,并通过与EMD-样本熵的对比,表明FastICA-样本熵能更明显、稳定地反映齿轮故障,因此可作为一种有效的故障特征。 展开更多
关键词 EMD 端点效应 FASTICA 样本熵 齿轮故障特征提取
下载PDF
一种改进的ATF方法在齿轮故障诊断中的应用 被引量:1
2
作者 黎琦 陈向民 +2 位作者 张亢 卢绪祥 李录平 《噪声与振动控制》 CSCD 2020年第1期59-64,103,共7页
针对转速波动下的齿轮故障信号与故障特征提取,提出一种基于频域滤波的自适应时变滤波(Adaptive time-varying filtering,ATF)方法,并将其应用于齿轮故障诊断中。该方法先用线调频小波路径追踪(Chirplet path pursuit,CPP)算法估计齿轮... 针对转速波动下的齿轮故障信号与故障特征提取,提出一种基于频域滤波的自适应时变滤波(Adaptive time-varying filtering,ATF)方法,并将其应用于齿轮故障诊断中。该方法先用线调频小波路径追踪(Chirplet path pursuit,CPP)算法估计齿轮箱故障振动信号中的齿轮啮合频率,并依据啮合频率在频域设计自适应时变滤波器,以滤取包含齿轮故障信息的时变滤波信号;再对采用阶次跟踪算法对滤波信号进行等角度重采样,并对重采样后的信号进行自相关分析,以去除通带内噪声的干扰;最后对去噪后的信号进行谱分析,获得其自相关阶次谱,并根据自相关阶次谱中的调制边频带诊断齿轮故障,对变转速下的齿轮局部故障信号进行了仿真分析和试验。结果表明,该方法对滤波器通带和阻带内的噪声均具有较好的抑制作用,且提取的齿轮故障信号无相位畸变,故障调制边频带也更为突出。 展开更多
关键词 故障诊断 齿轮故障特征提取 自适应时变滤波 线调频小波
下载PDF
A fault feature extraction method of gearbox based on compound dictionary noise reduction and optimized Fourier decomposition 被引量:1
3
作者 Mao Yifan Xu Feiyun 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期22-32,共11页
Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dict... Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dictionary noise reduction and optimized FDM(OFDM)is proposed.Firstly,the characteristics of the gear signals are used to construct a compound dictionary,and the orthogonal matching pursuit algorithm(OMP)is combined to reduce the noise of the vibration signal.Secondly,in order to overcome the mode mixing phenomenon occuring during the decomposition of FDM,a method of frequency band division based on the extremum of the spectrum is proposed to optimize the decomposition quality.Then,the OFDM is used to decompose the signal into several analytic Fourier intrinsic band functions(AFIBFs).Finally,the AFIBF with the largest correlation coefficient is selected for Hilbert envelope spectrum analysis.The fault feature frequencies of the vibration signal can be accurately extracted.The proposed method is validated through analyzing the gearbox fault simulation signal and the real vibration signals collected from an experimental gearbox. 展开更多
关键词 Fourier decomposition compound dictionary mode mixing gearbox fault feature extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部