期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
PSO-SVM及其在减速机齿轮诊断中的应用 被引量:7
1
作者 韩霞 赵军 +2 位作者 西热娜依.白克力 郭天太 孔明 《传感器与微系统》 CSCD 2018年第4期155-157,160,共4页
针对支持向量机(SVM)参数一般是人为选取,无法准确取到最佳值的问题,提出了一种基于粒子群算法(PSO)对参数进行优化的支持向量机(PSO-SVM)。以减速机齿轮的3类故障类型(正常、磕碰、磨损)数据作为研究资料,组成训练样本集,训练PSO-SVM... 针对支持向量机(SVM)参数一般是人为选取,无法准确取到最佳值的问题,提出了一种基于粒子群算法(PSO)对参数进行优化的支持向量机(PSO-SVM)。以减速机齿轮的3类故障类型(正常、磕碰、磨损)数据作为研究资料,组成训练样本集,训练PSO-SVM分类模型,从训练集中抽取部分数据组成测试样本集,对模型进行检验测试。研究表明:PSO-SVM模型分类正确率达到了93.8%,相较未进行参数优化的SVM,算法能更好地找到全局最优解,提高了模型的分类正确率。 展开更多
关键词 粒子群优化算法 支持向量机 齿轮诊断
下载PDF
基于改进VMD-MCKD和深度残差网络的风机齿轮箱故障诊断 被引量:3
2
作者 蔡昌春 何捷 +2 位作者 承敏钢 张能文 王全凯 《山东电力技术》 2024年第2期67-78,共12页
行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先... 行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先,通过变分模态分解算法(variational mode decomposition,VMD)分解风机齿轮箱原始振动信号,获得振动信号故障的最优模态分量;接着,利用最大相关峭度解卷积算法(maximum correlated kurtosis decnvolution,MCKD)通过解卷积重构最优模态分量,削弱背景噪声增强故障冲击成分,获得故障特征;同时利用麻雀搜索算法(sparrow search algorithm,SSA)优化惩罚因子α、模态分解个数K、滤波器阶数L和反褶积周期T等参数,提升振动信号故障特征提取的准确度;最后,构建基于深度残差网络(deep residual network,ResNet)的齿轮箱故障诊断模型,建立齿轮箱故障特征与类别的非线性映射关系,实现风机齿轮箱故障分类识别。实验结果表明,所提风机齿轮箱故障诊断方法的准确率达到97.48%,相较其他方法在信号特征提取和故障诊断效率方面有明显提高。 展开更多
关键词 齿轮故障诊断 变分模态分解 最大相关峭度解卷积 深度残差网络 麻雀搜索算法
下载PDF
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
3
作者 李俊卿 刘若尧 何玉灵 《机床与液压》 北大核心 2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM... 目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。 展开更多
关键词 变分模态分解(VMD) 北方苍鹰优化(NGO)算法 改进GoogLeNet 齿轮箱故障诊断
下载PDF
基于SDP和MCNN-LSTM的齿轮箱故障诊断方法
4
作者 吴胜利 周燚 邢文婷 《振动与冲击》 EI CSCD 北大核心 2024年第15期126-132,178,共8页
齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参... 齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参数的选取。结合多尺度卷积神经网络(multi-scale convolutional neural network, MCNN)的空间处理优势、长短时记忆网络(long short term memory, LSTM)的时间处理优势及其良好的抗噪性和鲁棒性,提出了一种基于SDP和MCNN-LSTM的齿轮箱故障诊断模型。同时利用东南大学齿轮箱数据集,验证了基于SDP和MCNN-LSTM的齿轮箱故障诊断方法对齿轮和轴承常见故障类型特征提取的有效性,并与现有其他故障诊断方法进行对比,结果表明了所提方法具有更高的精度。 展开更多
关键词 齿轮箱故障诊断 对称点图案(SDP) 最小能量误差 多尺度卷积神经网络(MCNN) 长短时记忆网络(LSTM)
下载PDF
EHDE和WHO-SVM模型在齿轮箱故障诊断中的应用
5
作者 马晓娜 周海超 《机电工程》 CAS 北大核心 2024年第4期622-632,共11页
针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增... 针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增强层次多样性熵,并将其作为特征提取指标用于提取齿轮箱的故障特征;其次,采用WHO算法对SVM模型的参数进行了优化,建立了参数最优的WHO-SVM分类器;最后,将故障特征样本输入至WHO-SVM分类器中进行了训练和识别,完成了样本的故障识别;利用齿轮箱数据集分别从数据长度敏感性、算法特征提取时间、模型诊断性能三种角度对EHDE、精细复合多尺度样本熵、精细复合多尺度模糊熵、精细复合多尺度排列熵、精细复合多尺度散布熵、精细复合多尺度波动散布熵进行了对比研究。研究结果表明:EHDE方法对数据长度的要求较低,在数据长度为512时即可以取得99.1%的平均识别准确率,在诊断稳定性和诊断精度方面均优于其他对比方法;在算法的泛化性实验中,EHDE方法能够以98%的准确率识别齿轮箱的不同故障类型,具有明显的泛化性和通用性。 展开更多
关键词 齿轮箱故障诊断 增强层次多样性熵 野马算法优化支持向量机 数据长度敏感性 算法特征提取时间 模型诊断性能
下载PDF
半监督TS网络模型在齿轮故障诊断中的应用
6
作者 陈保家 阮宇豪 +3 位作者 陈法法 肖文荣 李公法 陶波 《机械科学与技术》 CSCD 北大核心 2024年第7期1249-1256,共8页
为解决在工业大数据条件下,有标签样本少导致机械故障诊断准确率低的问题,提出了一种半监督神经网络模型。该方法采用协同训练的方式,从时域和频域两个维度训练教师网络(T),将无标签数据转化为高质量的伪标签数据。再利用转化后的伪标... 为解决在工业大数据条件下,有标签样本少导致机械故障诊断准确率低的问题,提出了一种半监督神经网络模型。该方法采用协同训练的方式,从时域和频域两个维度训练教师网络(T),将无标签数据转化为高质量的伪标签数据。再利用转化后的伪标签数据训练学生网络(S),通过对数据进行评判和计分,避免网络过拟合。最后通过得分函数,对伪标签数据进行阶梯筛选成为有标签数据。齿轮故障诊断结果表明:TS网络在仅有少量有标签数据的情况下,故障分类准确率达90.31%,与其他半监督方法相比,准确率高出15%~20%。在信噪比(SNR)为5、0、-5的条件下,模型可以达到86.81%、78.00%、52.78%的诊断准确率。 展开更多
关键词 齿轮故障诊断 伪标签学习 抗噪性 协同训练
下载PDF
GADF和改进CNN的齿轮箱复杂环境下故障诊断
7
作者 刘成义 董绍江 +1 位作者 唐倩 邓文亮 《机械设计与制造》 北大核心 2024年第9期92-96,103,共6页
针对齿轮箱同时处于变负载和含有噪声的复杂环境下的故障诊断难题,提出一种基于格拉姆角差场(Gram Angle Difference Field,简称GADF)和改进的具有多注意力机制的卷积神经网络(Multiple Attention Mechanism Convolutional Neural Netwo... 针对齿轮箱同时处于变负载和含有噪声的复杂环境下的故障诊断难题,提出一种基于格拉姆角差场(Gram Angle Difference Field,简称GADF)和改进的具有多注意力机制的卷积神经网络(Multiple Attention Mechanism Convolutional Neural Network,简称MACNN)的齿轮箱故障诊断方法。首先将采集得到齿轮箱的一维振动信号的故障数据集进行预处理;然后通过格拉姆角差场将一维数据集转为二维图像数据;其次,将二维数据集数输入到改进的带有多注意力机制的卷积神经网络模型中进行训练;最后采用Softmax对齿轮箱故障数据集进行分类。通过试验验证,这里所提的方法在两个负载数据集上都可以达到99.80%以上,改进之后的模型训练效率更高、耗时更短,同时这里所提方法也优于一些已经发表的齿轮箱故障诊断的方法,此外本方法对齿轮箱在同时处于变负载和噪声的复杂环境中,依然有着较强的故障诊断能力。 展开更多
关键词 齿轮箱故障诊断 格拉姆角差场 注意力机制 卷积神经网络
下载PDF
齿轮箱故障边缘智能诊断方法及应用研究 被引量:1
8
作者 吴启航 丁晓喜 +1 位作者 何清波 黄文彬 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期70-80,共11页
针对齿轮箱运行状态监测数据量大而数据价值密度低导致的数据传输和存储困难、受到带宽影响导致的故障辨识实时性差以及大而深的深度学习模型难以有效部署至边缘端硬件等问题,本文提出了一种基于乘法-卷积网络(MCN)的齿轮箱故障边缘智... 针对齿轮箱运行状态监测数据量大而数据价值密度低导致的数据传输和存储困难、受到带宽影响导致的故障辨识实时性差以及大而深的深度学习模型难以有效部署至边缘端硬件等问题,本文提出了一种基于乘法-卷积网络(MCN)的齿轮箱故障边缘智能诊断方法。首先,综合考虑信号滤波在特征表征以及深度学习在特征提取的优势,设计了一种轻量化的MCN模型,同时在嵌入式微处理器搭建了一套端侧边缘智能处理原型与系统。该系统可以直接部署于齿轮箱边缘,通过云服务器训练和更新MCN模型参数并部署至边缘端,于边缘端完成数据采集、处理和故障状态辨识等功能,将大量传感器数据直接消耗在边缘端。实验结果显示MCN具有99.75%的平均识别精度,且部署MCN的齿轮箱故障边缘智能诊断系统可以在0.696 s内准确识别出故障状态。 展开更多
关键词 齿轮故障诊断 边缘计算 乘法-卷积 深度学习 嵌入式系统
下载PDF
强噪声干扰下采煤机行星齿轮故障诊断方法
9
作者 李勇 张启志 +2 位作者 庄德玉 邱锦波 程刚 《工矿自动化》 CSCD 北大核心 2024年第6期142-149,共8页
采煤机摇臂截割部行星齿轮的健康状态直接影响截割效率。针对采煤机截割煤岩过程中受多重冲击引起的强噪声干扰、齿轮结构复杂且传递路径多变导致故障特征难以提取等特点,提出了一种基于频谱平均降噪和相关谱的采煤机行星齿轮故障诊断... 采煤机摇臂截割部行星齿轮的健康状态直接影响截割效率。针对采煤机截割煤岩过程中受多重冲击引起的强噪声干扰、齿轮结构复杂且传递路径多变导致故障特征难以提取等特点,提出了一种基于频谱平均降噪和相关谱的采煤机行星齿轮故障诊断方法。根据信号频谱分布特征及噪声随机特性,采用频谱平均降噪方法抑制噪声对信号频谱的干扰,获得信号降噪频谱。构建相关谱以建立少样本降噪频谱和多样本降噪频谱的内在联系,减少频谱平均降噪对样本数量的需求。采用一维卷积神经网络(1D CNN)建立相关谱与故障类别之间的精确映射关系,以相关谱为输入、故障类别为输出,实现行星齿轮故障分类识别。在DDS传动系统故障诊断实验台对基于频谱平均降噪和相关谱的采煤机行星齿轮故障诊断方法进行实验验证,结果表明该方法能够增强表征故障特征的关键频率,对正常、断齿、磨损、缺齿和裂纹5种行星齿轮健康状态信号的整体识别率达96%,在信噪比不低于15 dB时可有效、准确地实现齿轮故障诊断。 展开更多
关键词 采煤机 齿轮故障诊断 强噪声干扰 频谱平均降噪 相关谱
下载PDF
基于VMD和优化SSA-ELM的齿轮箱故障诊断
10
作者 孟博 郇战 +3 位作者 时文雅 余中舟 周靖诺 王佳晖 《郑州大学学报(理学版)》 CAS 北大核心 2024年第2期80-86,共7页
针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)... 针对传统滤波器对齿轮箱信号去噪不充分和模型识别准确率低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和改进麻雀搜索算法(sparrow search algorithm,SSA)来优化极限学习机(extreme learning machine,ELM)的齿轮箱故障诊断模型。通过改进VMD后含噪分量的选取方式,并结合小波包阈值处理对齿轮箱信号进行滤噪,在提取时频域有效特征的基础上,通过Tent混沌映射和引入微分递减因子改进SSA以优化ELM模型进行分类识别。实验结果表明,所提模型对齿轮箱故障工况的分类准确率达到99.50%,在故障诊断精度提升的同时收敛速度更快,验证了模型的可行性。 展开更多
关键词 齿轮箱故障诊断 变分模态分解 小波包去噪 Tent混沌 麻雀搜索算法 极限学习机
下载PDF
基于参数优化VMD-KPCA和BP网络的齿轮故障诊断方法
11
作者 蒋丽英 张群晨 +2 位作者 高铭悦 张瀛予 李贺 《沈阳航空航天大学学报》 2024年第4期41-49,共9页
针对噪声环境下难以提取齿轮故障特征、诊断准确率低的问题,提出了一种将基于综合评价指标的变分模态分解(variational mode decomposition,VMD)参数寻优、核主成分分析(kernel principal component analysis,KPCA)特征融合和BP网络相... 针对噪声环境下难以提取齿轮故障特征、诊断准确率低的问题,提出了一种将基于综合评价指标的变分模态分解(variational mode decomposition,VMD)参数寻优、核主成分分析(kernel principal component analysis,KPCA)特征融合和BP网络相结合的齿轮故障诊断方法。首先,为了有效评价VMD分解后的各固有模态函数(intrinsic mode function,IMF)分量及避免变分模态分解需要人为设定相关参数的问题,设计了一种基于包络熵与峭度的综合评价指标,用于建立VMD参数寻优中的适应度函数及筛选最优IMF分量;其次,按最优参数进行VMD分解后对最优IMF分量提取多域特征集,再利用KPCA模型对其进行特征的融合;最后,通过BP网络模型进行故障诊断。实验表明,与其他传统方法相比,在相同实验条件下该方法提高了齿轮故障的识别率,准确率高达98%,证明了该方法的有效性。 展开更多
关键词 齿轮故障诊断 综合评价指标 变分模态分解 鲸鱼优化算法 BP网络
下载PDF
机舱式激光雷达测风仪传动齿轮机械故障诊断研究
12
作者 马骁 韦存海 +2 位作者 李跃朋 赵亮 焦波 《机械与电子》 2024年第8期76-80,共5页
提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到... 提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到最小二乘支持向量机(least squares support vector machine,LSSVM)中,完成传动齿轮机械故障的诊断。实验结果表明,该方法的齿轮故障诊断时间短,根据迭代次数的增加,误差率可控制在3%以下。 展开更多
关键词 齿轮故障诊断 最小熵反褶积 本征模式分量能量 峭度 最小二乘支持向量机
下载PDF
风力发电机组中齿轮箱的故障诊断与研究
13
作者 范满满 王利东 《中文科技期刊数据库(全文版)工程技术》 2024年第8期0173-0176,共4页
风力发电的广泛应用对风力发电机组的性能和稳定性提出了更高要求。本研究专注于风力发电机组中齿轮箱的故障诊断,采用深度分析振动信号的方法,有效识别并预测齿轮箱故障。同时,通过监控齿轮箱的温度、压力等性能参数,全面掌握其运行状... 风力发电的广泛应用对风力发电机组的性能和稳定性提出了更高要求。本研究专注于风力发电机组中齿轮箱的故障诊断,采用深度分析振动信号的方法,有效识别并预测齿轮箱故障。同时,通过监控齿轮箱的温度、压力等性能参数,全面掌握其运行状态。研究结果表明,该方法显著提高了齿轮箱故障诊断的准确率,对提升风力发电机组的运行效率、降低维护成本具有实际且重要的意义。 展开更多
关键词 风力发电机组 齿轮箱故障诊断 振动信号分析 齿轮箱故障诊断 振动信号分析
下载PDF
地铁车辆齿轮箱故障诊断方法探究
14
作者 周峻峰 《现代工程科技》 2024年第21期117-120,共4页
为探讨地铁车辆齿轮箱故障诊断方法,基于油液磨粒图像(oil abrasive particle image,OAPI)设计齿轮箱故障诊断系统,凭借图像采集模块获取故障参数,并依次完成图像预处理、边缘检测以及尺寸标定,结合融入元学习算法(model-agnostic meta-... 为探讨地铁车辆齿轮箱故障诊断方法,基于油液磨粒图像(oil abrasive particle image,OAPI)设计齿轮箱故障诊断系统,凭借图像采集模块获取故障参数,并依次完成图像预处理、边缘检测以及尺寸标定,结合融入元学习算法(model-agnostic meta-learning,MAML)的卷积神经网络(convolutional neural networks,CNN)模型,实现OAPI的图像分类、识别。研究结果表明,该方法相较于基于干预训练法的故障诊断技术,能够提高近23%的故障识别准确度。 展开更多
关键词 图像特征提取 齿轮箱故障诊断 卷积神经网络模型 油液磨粒图像
下载PDF
齿轮故障的震动局部损伤信息诊断法
15
作者 徐长思 《科技资讯》 2008年第10期18-19,共2页
本文介绍一种提取齿轮局部损伤信息的方法。设时域因果性实现号为x(t),则其希尔伯变换为,x(t)对应的解析信号位g(t),g(t)的幅值A(t)为信号x(t)的包络。据此原理,对齿轮震动信号进行包络处理和同步平均处理,已提取齿轮高频震动中的轮齿... 本文介绍一种提取齿轮局部损伤信息的方法。设时域因果性实现号为x(t),则其希尔伯变换为,x(t)对应的解析信号位g(t),g(t)的幅值A(t)为信号x(t)的包络。据此原理,对齿轮震动信号进行包络处理和同步平均处理,已提取齿轮高频震动中的轮齿局部损伤信息。 展开更多
关键词 高频震动 损伤状态 包络 齿轮诊断
下载PDF
基于LMD的谱峭度方法在齿轮故障诊断中的应用 被引量:33
16
作者 程军圣 杨怡 杨宇 《振动与冲击》 EI CSCD 北大核心 2012年第18期20-23,54,共5页
针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法... 针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。 展开更多
关键词 局部均值分解 时频分析 谱峭度 齿轮故障诊断
下载PDF
Hilbert-Huang变换在齿轮故障诊断中的应用 被引量:77
17
作者 于德介 程军圣 杨宇 《机械工程学报》 EI CAS CSCD 北大核心 2005年第6期102-107,共6页
为齿轮故障诊断提供了一种新的途径,将Hilbert-Huang变换引入齿轮故障诊断,提出了局部Hilbert能量谱的概念,同时根据齿轮故障振动信号的特点建立了两种基于Hilbert-Huang变换的齿轮故障诊断方法:基于EMD的频率族分离法和Hilbert能量谱... 为齿轮故障诊断提供了一种新的途径,将Hilbert-Huang变换引入齿轮故障诊断,提出了局部Hilbert能量谱的概念,同时根据齿轮故障振动信号的特点建立了两种基于Hilbert-Huang变换的齿轮故障诊断方法:基于EMD的频率族分离法和Hilbert能量谱方法。采用EMD(Empiricalmodedecomposition)方法对齿轮振动信号能有效地将各个频率族分离;局部Hilbert能量谱可以反映齿轮振动信号的能量随时间和频率的分布情况,从而可以提取齿轮振动信号的故障信息。将这两种方法应用于齿轮故障诊断中,结果表明,基于EMD的频率族分离法和Hilbert能量谱方法都能有效地提取齿轮故障特征信息。 展开更多
关键词 HILBERT-HUANG变换 局部Hilbert能量谱EMD 频率族分离法 齿轮故障诊断
下载PDF
局部特征尺度分解方法及其在齿轮故障诊断中的应用 被引量:57
18
作者 程军圣 杨怡 杨宇 《机械工程学报》 EI CAS CSCD 北大核心 2012年第9期64-71,共8页
在定义瞬时频率具有物理意义的单分量信号——内禀尺度分量(Intrinsic scale component,ISC)的基础上,提出一种新的自适应信号分解方法——局部特征尺度分解(Local characteristic-scale decomposition,LCD)。LCD方法可以自适应地将任... 在定义瞬时频率具有物理意义的单分量信号——内禀尺度分量(Intrinsic scale component,ISC)的基础上,提出一种新的自适应信号分解方法——局部特征尺度分解(Local characteristic-scale decomposition,LCD)。LCD方法可以自适应地将任何一个复杂信号分解为若干个瞬时频率具有物理意义的ISC分量之和,非常适合于处理多分量的调幅—调频信号。当齿轮发生故障时,其振动信号一般为多分量的调幅—调频信号,因此局部特征尺度分解方法可以有效地应用于齿轮故障诊断。对LCD和经验模态分解(Empirical mode decomposition,EMD)、局部均值分解(Local mean decomposition,LMD)方法进行对比,结果表明了LCD方法的优越性。同时,针对齿轮故障振动信号的调制特征,将LCD方法和包络分析法相结合应用于齿轮故障诊断,对实际的齿轮故障振动信号进行分析,结果表明LCD方法可以有效地应用于齿轮故障诊断。 展开更多
关键词 内禀尺度分量 局部特征尺度分解 自适应信号分解 调制 齿轮故障诊断
下载PDF
Hilbert能量谱及其在齿轮故障诊断中的应用 被引量:27
19
作者 于德介 程军圣 杨宇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第4期47-50,共4页
将Hilbert Huang变换引入齿轮故障诊断,提出了局部Hilbert能量谱的概念,同时建立了一种基于Hilbert Huang变换的齿轮故障诊断方法:Hilbert能量谱方法.该方法首先采用EMD方法将齿轮故障振动信号分解为若干个固有模态函数(IntrinsicModeFu... 将Hilbert Huang变换引入齿轮故障诊断,提出了局部Hilbert能量谱的概念,同时建立了一种基于Hilbert Huang变换的齿轮故障诊断方法:Hilbert能量谱方法.该方法首先采用EMD方法将齿轮故障振动信号分解为若干个固有模态函数(IntrinsicModeFunc tion,简称IMF)之和,然后选择包含故障信息的IMF分量进行Hilbert变换得到局部Hilbert能量谱。在局部瞬时能量图中可以发现,齿轮故障振动信号具有明显的冲击特征,从而可进一步对齿轮故障进行诊断. 展开更多
关键词 Hilbert—Huang变换 局部Hilbert能量谱 局部瞬时能量 齿轮故障诊断
下载PDF
基于线调频小波路径追踪阶比循环平稳解调的齿轮故障诊断 被引量:20
20
作者 陈向民 于德介 罗洁思 《机械工程学报》 EI CAS CSCD 北大核心 2012年第3期95-101,共7页
为从变转速齿轮箱振动信号中提取齿轮故障特征,提出基于线调频小波路径追踪的阶比循环平稳解调方法。该方法利用线调频小波路径追踪算法估计振动信号中的转速信号,根据转速信号对信号进行等角度采样,获取角域周期平稳信号,求取角域信号... 为从变转速齿轮箱振动信号中提取齿轮故障特征,提出基于线调频小波路径追踪的阶比循环平稳解调方法。该方法利用线调频小波路径追踪算法估计振动信号中的转速信号,根据转速信号对信号进行等角度采样,获取角域周期平稳信号,求取角域信号的循环自相关函数,在特征循环阶比处对循环自相关函数进行切片,并对切片进行解调分析得到切片解调谱,依据切片解调谱进行齿轮故障诊断。由于线调频小波路径追踪算法具有精度高和抗噪能力强的优点,而循环平稳解调算法可以有效提取淹没在噪声中的周期性故障特征,因而,该方法结合了二者的优点,适合于变转速齿轮信号的故障特征提取。算法仿真和应用实例表明,该方法能有效地提取变转速齿轮箱振动信号中的齿轮故障特征。 展开更多
关键词 线调频小波 阶比跟踪 循环平稳解调 齿轮故障诊断
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部