提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到...提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到最小二乘支持向量机(least squares support vector machine,LSSVM)中,完成传动齿轮机械故障的诊断。实验结果表明,该方法的齿轮故障诊断时间短,根据迭代次数的增加,误差率可控制在3%以下。展开更多
针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法...针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。展开更多
文摘提出了机舱式激光雷达测风仪传动齿轮机械故障诊断方法。利用最小熵反褶积(MED)对齿轮的振动信号去噪处理,利用集成经验模态分解(EEMD)得到齿轮信号的内涵模态(IMF)分量,并根据IMF能量和齿轮峭度建立齿轮故障特征向量,将特征向量输入到最小二乘支持向量机(least squares support vector machine,LSSVM)中,完成传动齿轮机械故障的诊断。实验结果表明,该方法的齿轮故障诊断时间短,根据迭代次数的增加,误差率可控制在3%以下。
文摘针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。