In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consi...In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.展开更多
A dynamic model to describe the torsional vibration behaviors of a spur gear system is presented in this paper.Differential equations of nonlinear dynamics for the gear system exhibiting combined nonlinearity influenc...A dynamic model to describe the torsional vibration behaviors of a spur gear system is presented in this paper.Differential equations of nonlinear dynamics for the gear system exhibiting combined nonlinearity influence such as time-varying mesh stiffness,backlash and dynamic transmission error(DTE) were obtained.The method of multiple scales was employed to solve the nonlinear differential equations with parametric excitation in gear systems,by which both the frequency-response curves of the primary resonance caused by internal excitation and the analytical periodic solutions of nonlinear differential equations were obtained.The nonlinear influence of stiffness variation,the damping and the internal excitation on the system response was shown by frequency-response curves.Compared with numerical examples,the approximate analytical solutions are in good agreement with exact solutions,which proves that the method of multiple scales is effective for solving nonlinear problems in gear systems.展开更多
文摘In order to investigate the vibration of gear transmission system with clearance, a vibratory test-bed of the gear transmission system was designed. The non-linear dynamic model of the system was presented, with consideration of the effects of nonlinear dynamic gear mesh excitation, flexible rotors and bearings. Integration method was used to investigate the non-linear dynamic response of the system. The results imply that when the mesh frequency is near the natural frequency of gear pair, it is the first primary resonance, the bifurcation appears, and the vibration becomes to be chaotic motion rapidly. When the speed is close to the natural frequency of the first-order bending vibration, it is the second primary resonance, the periodic motion changes to chaos by period doubling bifurcation. The vibratory measurement of test-bed of the gear transmission system was performed. Accelerometers were employed to measure the high frequency vibration. Experimental results show that the vibration acceleration of the gear transmission system includes mesh frequency and sideband. The numerical calculation results of low speed can be validated by experimental results basically. It means that the presented non-linear dynamic model of the gear transmission system is right.
文摘A dynamic model to describe the torsional vibration behaviors of a spur gear system is presented in this paper.Differential equations of nonlinear dynamics for the gear system exhibiting combined nonlinearity influence such as time-varying mesh stiffness,backlash and dynamic transmission error(DTE) were obtained.The method of multiple scales was employed to solve the nonlinear differential equations with parametric excitation in gear systems,by which both the frequency-response curves of the primary resonance caused by internal excitation and the analytical periodic solutions of nonlinear differential equations were obtained.The nonlinear influence of stiffness variation,the damping and the internal excitation on the system response was shown by frequency-response curves.Compared with numerical examples,the approximate analytical solutions are in good agreement with exact solutions,which proves that the method of multiple scales is effective for solving nonlinear problems in gear systems.