Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. ...Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.展开更多
Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the m...Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.展开更多
基金Projects(51275530,51535012) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of China
文摘Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.
基金Project(2019 YFB 2004700)supported by the National Key R&D Project of ChinaProject(HTL-O-19 K 02)supported by National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,China。
文摘Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.