Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio...Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.展开更多
Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth...Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses.Using a long-term experiment of N addition in a boreal forest,we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input.We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea.The cover of the grass D.angustifolia increased with increasing N addition,while that of the shrub V.vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time.P resorption efficiency(PRE)increased in D.angustifolia but decreased in V.vitis-idaea with increasing leaf N:P which was increased by N addition for both species.In addition,photosynthesis increased linearly with N resorption efficiency(NRE)and PRE but was better explained by NRE:PRE,changing nonlinearly with the ratio in a hump-shaped trend.Furthermore,the variance(CV)of NRE:PRE for V.vitis-idaea(123%)was considerably higher than that for D.angustifolia(29%),indicating a more stable nutrient resorption stoichiometry of the grass.Taken together,these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.展开更多
This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blo...This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.展开更多
Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed ...Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.展开更多
The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh lit...The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.展开更多
Water and nitrogen are primary limiting factors in semiarid grassland ecosystems. Our knowledge is still poor regarding the interactive effects of water and N addition on soil microbial communities, although this info...Water and nitrogen are primary limiting factors in semiarid grassland ecosystems. Our knowledge is still poor regarding the interactive effects of water and N addition on soil microbial communities, although this information is crucial to reveal the mechanisms of the terrestrial ecosystem response to global changes. We addressed this problem by conducting a field experiment with a 15% surplus of the average rainfall under three levels of N addition(50, 100, and 200 kg N ha–1 yr–1) in two consecutive years in Inner Mongolia, China. Microbial community composition and functional diversity were analyzed based on phospholipid fatty acids(PLFA) and BIOLOG techniques, respectively. The results showed that water addition did not affect the soil microbial community composition, but much more yearly precipitation generally decreased the PLFA concentration, which implied a fast response of soil microbes to changes of water condition. Soil fungi was depressed only by N addition at the high level(200 kg N ha–1 yr–1) and without hydrologic leaching, while Gram-negative bacteria was suppressed probably by plant competition at high level N addition but with hydrologic leaching. The study found unilateral positive/negative interactions between water and N addition in affecting soil microbial community, however, climate condition(precipitation) could be a significant factor in disturbing the interactions. This study highlighted that:(1) The sustained effect of pulsed water addition was minimal on the soil microbial community composition but significant on the microbial community functional diversity and(2) the complex interaction between water and N addition on soil microbial community related to the inter-annual variation of the climate and plant response.展开更多
Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experimen...Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experiment was conducted at Duolun, Inner Mongolia, China, to investigate the effects of N addition on a temperate steppe ecosystem. Six N levels (0, 3, 6, 12, 24, and 48 g N/(m2-a)) were added as three applications per year from 2005 to 2010. Enhanced N deposition, even as little as 3 g N/(m2.a) above ambient N deposition (1.2 g N/(m2.a)), led to a decline in species richness of the whole community. Increasing N addition can significantly stimulate aboveground biomass of perennial bunchgrasses (PB) but decrease perennial forbs (PF), and induce a slight change in the biomass of shrubs and semi-shrubs (SS). The biomass of annuals (AS) and perennial rhizome grasses (PR) accounts for only a small part of the total biomass. Species richness of PF decreased significantly with increasing N addition rate but there was a little change in the other functional groups. PB, as the dominant functional group, has a relatively higher height than others. Differences in the response of each functional group to N addition have site-specific and species-specific characteristics. We initially infer that N enrichment stimulated the growth of PB, which further suppressed the growth of other functional groups.展开更多
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest...Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.展开更多
To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass...To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.展开更多
The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. altern...The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.展开更多
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence respo...Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (Ⅰ) and a fluctuant water table (Ⅳ), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table (Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.展开更多
Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,under...Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha^(-1) a^(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.展开更多
In order to understand the effects of increasing atmospheric nitrogen (N) deposition on the subtropical bamboo ecosystem, a nearly six-year field experiment was conducted in a Pleioblastus amarus plantation in the r...In order to understand the effects of increasing atmospheric nitrogen (N) deposition on the subtropical bamboo ecosystem, a nearly six-year field experiment was conducted in a Pleioblastus amarus plantation in the rainy region of SW China, near the western edge of Sichuan Basin. Four N treatment levels---control (no N added), low- N (50 kg N ha-1 a-l), medium-N (150 kg N ha-1 a-l), and high-N (300 kg N ha-1 a-1)--were applied monthly in the P. amarus plantation starting in November 2007. In June 2012, we collected intact soil cores in the bamboo plantation and conducted a 30-day laboratory incubation experiment. The results showed that the soil N net miner- alization rate was 0.96 4- 0.10 mg N kg-1 day-1, under control treatment. N additions stimulated the soil N net mineralization, and the high-N treatment significantly increased the soil N net mineralization rate compared with the control. Moreover, the soil N net mineralization rate was significantly and positively correlated with the fine root biomass, the soil microbial biomass nitrogen content and the soil initial inorganic N content, respectively,whereas it was negatively correlated with the soil pH value. There were no significant relationships between the soil N net mineralization rate and the soil total nitrogen (TN) content and the soil total organic carbon content and the soil C/N ratio and the soil microbial biomass carbon con- tent, respectively. These results suggest that N additions would improve the mineral N availability in the topsoil of the P. amarus plantation through the effects of N additions on soil chemical and physical characteristics and fine-root biomass.展开更多
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s...The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.展开更多
Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influen...Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.展开更多
Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of ...Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of conventional management(CM)versus intensive management(IM),in combination with simulated N deposition levels of control(ambient N deposition),30 kg N·ha^(−1)·year^(−1)(N30,ambient+30 kg N·ha^(−1)·year^(−1)),60 kg N·ha^(−1)·year^(−1)(N60,ambient+60 kg N·ha^(−1)·year^(−1)),or 90 kg N·ha^(−1)·year^(−1)(N90,ambient+90 kg N·ha^(−1)·year^(−1))on soil CO_(2),CH_(4),and N_(2)O fluxes.For this,24 plots were set up in a Moso bamboo(Phyllostachys edulis)plantation from January 2013 to December 2015.Gas samples were collected monthly from January 2015 to December 2015.Results:Compared with CM,IM significantly increased soil CO_(2) emissions and their temperature sensitivity(Q_(10))but had no significant effects on soil CH_(4) uptake or N_(2)O emissions.In the CM plots,N30 and N60 significantly increased soil CO_(2) emissions,while N60 and N90 significantly increased soil N_(2)O emissions.In the IM plots,N30 and N60 significantly increased soil CO_(2) and N_(2)O emissions,while N60 and N90 significantly decreased soil CH_(4) uptake.Overall,in both CM and IM plots,N30 and N60 significantly increased global warming potentials,whereas N90 did not significantly affect global warming potential.However,N addition significantly decreased the Q_(10) value of soil CO_(2) emissions under IM but not under CM.Soil microbial biomass carbon was significantly and positively correlated with soil CO_(2) and N_(2)O emissions but significantly and negatively correlated with soil CH_(4) uptake.Conclusion:Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.展开更多
Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem fu...Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.展开更多
Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropica...Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels(0, 50, 150,and300 kg N ha-1a-1,applied monthly, expressed as CK,LN,MN, HN,respectively) in three replicates. After6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity(EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK,LN,MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+,EA, and Al/Ca,and exchangeable Al3+ in HN increased by 70%compared to CK. Soil base cations(Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3--N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4~+-N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon,incorporated organic carbon, or particulate organic carbon.This study suggests that increasing N deposition could increase soil NO3--N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.展开更多
The mechanism that sustains the temporal stability of aboveground net primary production(ANPP)respond to nitrogen deposition is still controversial.Consequently,we investigated the mechanism of temporal stability of A...The mechanism that sustains the temporal stability of aboveground net primary production(ANPP)respond to nitrogen deposition is still controversial.Consequently,we investigated the mechanism of temporal stability of ANPP through the effect of N addition on diversity,species asynchrony andportfolio effects in northern Tibet alpine steppe over a period of three years.Our results showed that the community temporal stability did not significantly correlate with the species richness and Shannon–Wiener diversity.Species asynchrony and stability was also not significantly affected by N addition(p>0.05).Furthermore,there was no significant relationship between species asynchrony and temporal stability.Although the value of portfolio effects(z)(z=1.304,95%confidence intervals:1.029–1.597)was more than 1,the portfolio effects was not a primary driver of temporal stability due to the biodiversity being unaffected.The above results suggested that the richness,species asynchrony and portfolio effect could not support for mechanism of stability at the alpine steppe.From the results of path analysis,species temporal stability positively supports the community temporal stability in the alpine steppe ecosystem.According to the character of environment and vegetation of alpine steppe at North Tibet,we inferred that dominance species stability is more important than species richness for the community temporal stability.展开更多
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
基金the National Natural Science Foundation of China(31860136,31560156)the Basic Scientific Research Service Fee Project of Colleges and Universities of Inner Mongolia Autonomous Regionthe Graduate Scientific Research Innovation Project of Inner Mongolia Autonomous Region(B20210158Z).
文摘Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe.
基金supported by National Natural Science Foundation of China(Nos.31988102,32301390)Key Research Program of Frontier Sciences,CAS(No.QYZDY-SSW-SMC011)+1 种基金China Postdoctoral Science Foundation(No.2022T150697)supported by the postdoctoral fellowship program of CPSF under grant number GZC20240856.
文摘Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses.Using a long-term experiment of N addition in a boreal forest,we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input.We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea.The cover of the grass D.angustifolia increased with increasing N addition,while that of the shrub V.vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time.P resorption efficiency(PRE)increased in D.angustifolia but decreased in V.vitis-idaea with increasing leaf N:P which was increased by N addition for both species.In addition,photosynthesis increased linearly with N resorption efficiency(NRE)and PRE but was better explained by NRE:PRE,changing nonlinearly with the ratio in a hump-shaped trend.Furthermore,the variance(CV)of NRE:PRE for V.vitis-idaea(123%)was considerably higher than that for D.angustifolia(29%),indicating a more stable nutrient resorption stoichiometry of the grass.Taken together,these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.
文摘This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.
文摘Composting as a solution to the increasing generation of municipal solid waste (MSW), also contribute to GHGs emission when not controlled and could lack some basic nutrients, especially nitrogen. This study assessed the split-additions of nitrogen-rich substrate to composting materials and their effect on GHGs emissions as well as the quality of the composts. Nitrogen-rich substrates formulated from pig and goat manure were co-composted with MSW for a 12-weeks period by split adding at mesophilic (˚C) and thermophilic (>50˚C) stages in five different treatments. Representative samples from the compost were taken from each treatment for physicochemical, heavy metals and bacteriological analysis. In-situ CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O gas emissions were also analyzed weekly during composting. It was observed that all the treatments showed significant organic matter decomposition, reaching thermophilic temperatures in the first week of composting. The absence affects the suitable agronomic properties. All nitrogen-rich substrate applied at thermophilic stage (Treatment two) recorded the highest N, P and K concentrations of 1.34%, 0.97% and 2.45%, respectively with highest nitrogen retention. In terms of GHG emissions, CO<sub>2</sub> was highest at the thermophilic stage when N-rich substrate was added in all treatment, while CH<sub>4</sub> was highest in the mesophilic stage with N-rich substrate addition. N<sub>2</sub>O showed no specific trend in the treatments. Split addition of the N-rich substrate for co-composting of MSW produced compost which is stable, has less nutrient loss and low GHG emissions. Split addition of a nitrogen-rich substrate could be an option for increasing the fertilizer value of MSW compost.
基金Foundation project: This work was supported by the Knowledge Innova- tion Project of the Chinese Academy of Sciences (KZCX2-YW-416) and the National Natural Science Foundation (90411020)
文摘The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.
基金financially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-302)the National Natural Science Foundation of China (41330528,41373084 and 41203054)the Special Fund for Agro-Scientific Research in the Public Interest,China (201203012)
文摘Water and nitrogen are primary limiting factors in semiarid grassland ecosystems. Our knowledge is still poor regarding the interactive effects of water and N addition on soil microbial communities, although this information is crucial to reveal the mechanisms of the terrestrial ecosystem response to global changes. We addressed this problem by conducting a field experiment with a 15% surplus of the average rainfall under three levels of N addition(50, 100, and 200 kg N ha–1 yr–1) in two consecutive years in Inner Mongolia, China. Microbial community composition and functional diversity were analyzed based on phospholipid fatty acids(PLFA) and BIOLOG techniques, respectively. The results showed that water addition did not affect the soil microbial community composition, but much more yearly precipitation generally decreased the PLFA concentration, which implied a fast response of soil microbes to changes of water condition. Soil fungi was depressed only by N addition at the high level(200 kg N ha–1 yr–1) and without hydrologic leaching, while Gram-negative bacteria was suppressed probably by plant competition at high level N addition but with hydrologic leaching. The study found unilateral positive/negative interactions between water and N addition in affecting soil microbial community, however, climate condition(precipitation) could be a significant factor in disturbing the interactions. This study highlighted that:(1) The sustained effect of pulsed water addition was minimal on the soil microbial community composition but significant on the microbial community functional diversity and(2) the complex interaction between water and N addition on soil microbial community related to the inter-annual variation of the climate and plant response.
基金supported by the One Hundred Person Project of Chinese Academy of Sciencesthe National Natural Science Foundation of China (40771188,41071151)+1 种基金the Innovative Group Grants from NSFC (30821003)the Sino-German project (DFG Research Training Group,GK1070)
文摘Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experiment was conducted at Duolun, Inner Mongolia, China, to investigate the effects of N addition on a temperate steppe ecosystem. Six N levels (0, 3, 6, 12, 24, and 48 g N/(m2-a)) were added as three applications per year from 2005 to 2010. Enhanced N deposition, even as little as 3 g N/(m2.a) above ambient N deposition (1.2 g N/(m2.a)), led to a decline in species richness of the whole community. Increasing N addition can significantly stimulate aboveground biomass of perennial bunchgrasses (PB) but decrease perennial forbs (PF), and induce a slight change in the biomass of shrubs and semi-shrubs (SS). The biomass of annuals (AS) and perennial rhizome grasses (PR) accounts for only a small part of the total biomass. Species richness of PF decreased significantly with increasing N addition rate but there was a little change in the other functional groups. PB, as the dominant functional group, has a relatively higher height than others. Differences in the response of each functional group to N addition have site-specific and species-specific characteristics. We initially infer that N enrichment stimulated the growth of PB, which further suppressed the growth of other functional groups.
基金supported by the National Basic Research Program of China(2012CB416903)the National Natural Science Foundation of China(31570600)
文摘Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050508)Ministry of Land and Resources Program(No.201111023,GZH201100203)Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources(No.MRE201101)
文摘To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.
基金Under the auspices of National Natural Science Foundation of China(No.41301085)National Basic Research Program of China(No.2012CB956100)
文摘The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.
文摘Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (Ⅰ) and a fluctuant water table (Ⅳ), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table (Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.
基金financially supported by the Grants from the National Key Research and Development Plan(No.2016YFD06000202)the National Natural Science Foundation of China(Nos.31570443,31130009)
文摘Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha^(-1) a^(-1)) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.
基金supported by the National Natural Science Foundation of China(No.31300522)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20125103120018)
文摘In order to understand the effects of increasing atmospheric nitrogen (N) deposition on the subtropical bamboo ecosystem, a nearly six-year field experiment was conducted in a Pleioblastus amarus plantation in the rainy region of SW China, near the western edge of Sichuan Basin. Four N treatment levels---control (no N added), low- N (50 kg N ha-1 a-l), medium-N (150 kg N ha-1 a-l), and high-N (300 kg N ha-1 a-1)--were applied monthly in the P. amarus plantation starting in November 2007. In June 2012, we collected intact soil cores in the bamboo plantation and conducted a 30-day laboratory incubation experiment. The results showed that the soil N net miner- alization rate was 0.96 4- 0.10 mg N kg-1 day-1, under control treatment. N additions stimulated the soil N net mineralization, and the high-N treatment significantly increased the soil N net mineralization rate compared with the control. Moreover, the soil N net mineralization rate was significantly and positively correlated with the fine root biomass, the soil microbial biomass nitrogen content and the soil initial inorganic N content, respectively,whereas it was negatively correlated with the soil pH value. There were no significant relationships between the soil N net mineralization rate and the soil total nitrogen (TN) content and the soil total organic carbon content and the soil C/N ratio and the soil microbial biomass carbon con- tent, respectively. These results suggest that N additions would improve the mineral N availability in the topsoil of the P. amarus plantation through the effects of N additions on soil chemical and physical characteristics and fine-root biomass.
基金supported by the Science and Technology Consulting Program of Chinese Academy of Engineering(2015-XY-25)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2014BAD02B06-02)+2 种基金the Special Fund for Agro-scientific Research in Public Interest of China(201303095)the Basic Research Foundation of Shenyang Science and Technology Program,China(F16-205-1-38)the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT13079)
文摘The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice.
基金funded by the National Basic Research Program of China(2009CB825102)the National Basic Research Program of China(2009CB421102E)+1 种基金the International Science & Technology Cooperation Program of China(2010DFA92720)the Natural Science Foundation of China(4117049)
文摘Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.
基金This study was funded by the National Natural Science Foundation of China(Grant Nos.31270517 and 31470529).
文摘Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of conventional management(CM)versus intensive management(IM),in combination with simulated N deposition levels of control(ambient N deposition),30 kg N·ha^(−1)·year^(−1)(N30,ambient+30 kg N·ha^(−1)·year^(−1)),60 kg N·ha^(−1)·year^(−1)(N60,ambient+60 kg N·ha^(−1)·year^(−1)),or 90 kg N·ha^(−1)·year^(−1)(N90,ambient+90 kg N·ha^(−1)·year^(−1))on soil CO_(2),CH_(4),and N_(2)O fluxes.For this,24 plots were set up in a Moso bamboo(Phyllostachys edulis)plantation from January 2013 to December 2015.Gas samples were collected monthly from January 2015 to December 2015.Results:Compared with CM,IM significantly increased soil CO_(2) emissions and their temperature sensitivity(Q_(10))but had no significant effects on soil CH_(4) uptake or N_(2)O emissions.In the CM plots,N30 and N60 significantly increased soil CO_(2) emissions,while N60 and N90 significantly increased soil N_(2)O emissions.In the IM plots,N30 and N60 significantly increased soil CO_(2) and N_(2)O emissions,while N60 and N90 significantly decreased soil CH_(4) uptake.Overall,in both CM and IM plots,N30 and N60 significantly increased global warming potentials,whereas N90 did not significantly affect global warming potential.However,N addition significantly decreased the Q_(10) value of soil CO_(2) emissions under IM but not under CM.Soil microbial biomass carbon was significantly and positively correlated with soil CO_(2) and N_(2)O emissions but significantly and negatively correlated with soil CH_(4) uptake.Conclusion:Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.
基金support from the National Natural Science Foundation of China(41877542).
文摘Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.
基金financially supported by the Openend Fund of Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal University(ESP1507)the National Natural Science Foundation of China(31300522)
文摘Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels(0, 50, 150,and300 kg N ha-1a-1,applied monthly, expressed as CK,LN,MN, HN,respectively) in three replicates. After6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity(EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK,LN,MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+,EA, and Al/Ca,and exchangeable Al3+ in HN increased by 70%compared to CK. Soil base cations(Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3--N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4~+-N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon,incorporated organic carbon, or particulate organic carbon.This study suggests that increasing N deposition could increase soil NO3--N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.
基金financially supported by the National Key Research and Development Program(2016YFC0502002)National Natural Science Foundation of China(41401072)+1 种基金the Science Foundation for Young Scientists of IMDE,CASthe Open Fund of the Key Laboratory of Mountain Surface Processes and Ecological Regulation,CAS
文摘The mechanism that sustains the temporal stability of aboveground net primary production(ANPP)respond to nitrogen deposition is still controversial.Consequently,we investigated the mechanism of temporal stability of ANPP through the effect of N addition on diversity,species asynchrony andportfolio effects in northern Tibet alpine steppe over a period of three years.Our results showed that the community temporal stability did not significantly correlate with the species richness and Shannon–Wiener diversity.Species asynchrony and stability was also not significantly affected by N addition(p>0.05).Furthermore,there was no significant relationship between species asynchrony and temporal stability.Although the value of portfolio effects(z)(z=1.304,95%confidence intervals:1.029–1.597)was more than 1,the portfolio effects was not a primary driver of temporal stability due to the biodiversity being unaffected.The above results suggested that the richness,species asynchrony and portfolio effect could not support for mechanism of stability at the alpine steppe.From the results of path analysis,species temporal stability positively supports the community temporal stability in the alpine steppe ecosystem.According to the character of environment and vegetation of alpine steppe at North Tibet,we inferred that dominance species stability is more important than species richness for the community temporal stability.