Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold g...Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold great potential for exploration.Borehole samples taken from the granite buried hills in the SNLU were analyzed using apatite fission track(AFT)and zircon(U-Th)/He data to unravel the thermal history of the basement rock.This information is crucial for understanding the processes of exhumation and alteration that occurred after its formation.Thermal modeling of a sample from the western bulge of the SNLU revealed a prolonged cooling event from the late Mesozoic to the Oligocene period(~80-23.8 Ma),followed by a heating stage from the Miocene epoch until the present(~23.8 Ma to present).In contrast,the sample from the eastern bulge experienced a more complex thermal history.It underwent two cooling stages during the late Mesozoic to late Eocene period(~80-36.4 Ma)and the late Oligocene period(~30-23.8 Ma),interspersed with two heating phases during the late Eocene to early Oligocene period(~36.4-30 Ma)and the Miocene epoch to recent times(~23.8-0 Ma),respectively.The differences in exhumation histories between the western and eastern bulges during the late Eocene to Oligocene period in the SNLU can likely be attributed to differences in fault activity.Unlike typical passive continental margin basins,the SNLU has experienced accelerated subsidence after the rifting phase,which began around 5.2 Ma ago.The possible mechanism for this abnormal post-rifting subsidence may be the decay or movement of the deep thermal source and the rapid cooling of the asthenosphere.Long-term and multi-episodic cooling and exhumation processes play a key role in the alteration of bedrock and contribute to the formation of reservoirs.On the other hand,rapid post-rifting subsidence(sedimentation)promotes the formation of cap rocks.展开更多
Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement met...Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.展开更多
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e...Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.展开更多
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphi...Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃ and P =1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite eclogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃ and P 〉 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600- 710℃ and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245 ± 4 Ma for domain 1, 235 ± 3 Ma for domain 2 and 215± 6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244 ± 4 Ma, 233 ± 4 Ma and 214 ± 5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from - 55 km to 〉 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths 〉160 km to the base of the crust at -30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.展开更多
The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhum...The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhumation by the fission-track method. The results show that, no matter what type rocks are, the pooled ages of zircon and apatite fission-track range from 60.0 to 93.7 Ma and 28.6 to 43.3 Ma, respectively; all of the apatite fission-track length distributions are unimodal and yield a mean length of -13 μm; and the thermal history modeling results based on apatite fission-track data indicate that the time-temperature paths exhibit similar patterns and the cooling has been accelerated for each sample since the Pliocene (c.5 Ma). Therefore, we can conclude that a successive cooling, probably involving two slow (during c.75-35Ma and 35-5Ma) and one rapid (during c.5 Ma-0 Ma) cooling, has occurred through the exhumation of the Liiliang Mountains since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35℃/km. Combined with the tectonic setting, this exhumation may be the resultant effect from the surrounding plate interactions, and it has been accelerated since c.5 Ma predominantly due to the India-Eurasia collision.展开更多
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) therm...The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.展开更多
Abstract: Zircon and apatite fission-track dating indicates that the exhumation of the Dabie Mountains tended to be accelerated in the Cenozoic and that the exhumation of the eastern Dabie Mountains was more and more ...Abstract: Zircon and apatite fission-track dating indicates that the exhumation of the Dabie Mountains tended to be accelerated in the Cenozoic and that the exhumation of the eastern Dabie Mountains was more and more intense from south to north, which is in accordance with the more and more intense dissection from south to north, as is reflected by the modern geomorphologic features of the Dabie Mountains. The accelerated exhumation during the Cenozoic was related to the high elevation of the Dabie Mountains resulting from Late Cretaceous-Palaeogene detachment faulting and subsequent fault-block uplift and subsidence. The average elevation at that time was at least about 660 m higher than that at the present. The intense exhumation lagged behind intense uplift.展开更多
The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed ge...The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.展开更多
Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger...Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0 13.2 μm) mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassic-early Cretaceous and the Oligocene-Miocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (〉100 Ma), recording the earlier rapid uplift phase during the late Jurassic-Cretaceous, while the ages in the north pied- mont of the Bogda Mountain (namely the northeast part) are younger (〈60 Ma), mainly reflecting the later rapid uplift phase in the Oligocene-Miocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.展开更多
Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reve...Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reveals a Cenozoic exhumation event at 49.8 ± 12 Ma, which we interpret to be a result of exhumation caused by crustal extension. Within the uncertainty of our age determination, the timing of extension in East Antarctica determined by our study is coeval with the onset time of rifting in West Antarctica at c.55 Ma. The apatite fission-track cooling ages vary systematically in space, indicating a coherent block rotation of the Larsemann Hills region from c.50 Ma to c.10 Ma. This pattern of block tilting was locally disrupted by normal faulting along the Larsemann Hills detachment fault at c.5.4 Ma. The regional extension in the Larsemann Hills, East Antarctica was the result of tectonic evolution in this area, and may be related to the global extension. Through the discussion of Pan-Gondwanaland movement, and Mesozoic and Cenozoic extensions in West and East Antarctica and adjacent areas, we suggest that the protracted Cenozoic cooling over the Larsemann Hills area was caused by extensional tectonics related to separation and formation of the India Ocean at the time of Gondwanaland breakup.展开更多
The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subductio...The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subduction・related magmatic activities and subsequent exhumation processes occurred.Here,we report new low-temperature thermochronology of apatite and zircon data from the granitoid samples in the Yanji area.The exhumation rates of Tianfozhishan,Yanji area,were〜0.049 and〜0.073 mm/year,interpreted from the elevations and apatite and zircon fission track ages,respectively.The exhumation,integrated with the geological setting,suggested that the paleogeothermal gradient of the Tianfozhishan,even extending to the Yanji area,was possibly to be greater than 35℃/km in the Late Cretaceous.The thermal history modeling of the data indicates a basically similar pattern,but the various timing for different samples between the Oligocene-Early Miocene and the Middle Miocene in the Yanji area.We hence conclude that a fourstages of cooling,from〜6.7℃/Ma(during the Late Cretaceous),to〜0.8℃/Ma(during the Late Cretaceous to the Oligocene-Early Miocene),then to〜2-3℃/Ma with varied styles(between the Oligocene-Early Miocene and the Middle Miocene),and finally to<0.2℃/Ma(since the Middle Miocene),has taken place through the exhumation of the Yanji area.The maximum exhumation is>3 km under a reasonable paleogeothermal gradient(>35℃/km),speculated from the possible exhumation rate of Tianfozhishan.Combined with the tectonic setting,this exhumation,including two stages of pronounced tectonic uplift and denudation and two stages of weak exhumation driven by the low regional erosion rate,is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the Late Cretaceous.This study used more robust evidence to propose higher paleogeothermal gradient(>35℃/km),reflecting exhumation of>3 km in the Yanji area since the Late Cretaceous.展开更多
The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of ...The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros,展开更多
In order to understand how the metallogenic process of porphyry deposit specifically and directly respond to regional uplifting and exhumation,we compiled previous fluid inclusion data of 32 porphyry deposits in China...In order to understand how the metallogenic process of porphyry deposit specifically and directly respond to regional uplifting and exhumation,we compiled previous fluid inclusion data of 32 porphyry deposits in China by recalculating the fluid trapping depths and trapping depth reduction magnitude from early to late mineralization stage veins.The data reveal that the average trapping pressure ratio(Ave TP_(E)/TP_(L))between early-and late-stage veins of the these deposits are 1.2-18.4,mainly in the range of 1.35-5.83,with average trapping pressure reduction(1-Ave TP_(L)/TP_(E))from early-to late-stage veins are 17%-95%,and mainly in the range of 25%-83%.The fluid trapping pressure based mineralization depths most of the porphyry deposits in China had decreased from early to late vein stages by at least 450 m(900-5800 m predominant),or greater than 950 m when take the average depth reduction value,which is greater than the current gap between early-and late-stage veins of each deposit.We propose that the apparently greater mineralization depth reduction magnitude than the current elevation gaps between early and late veins are likely a consequence of synmineralization uplifting and exhumation process that often occurs in porphyry systems.展开更多
Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of...Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.展开更多
The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogit...The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.展开更多
Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understand...Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains展开更多
The absence of ultrahigh pressure(UHP)orogenic eclogite in the geological record older than c.0.6 Ga is problematic for evidence of subduction having begun on Earth during the Archean(4.0-2.5 Ga).Many eclogites in Pha...The absence of ultrahigh pressure(UHP)orogenic eclogite in the geological record older than c.0.6 Ga is problematic for evidence of subduction having begun on Earth during the Archean(4.0-2.5 Ga).Many eclogites in Phanerozoic and Proterozoic terranes occur as mafic boudins encased within low-density felsic crust,which provides positive buoyancy during subduction;however,recent geochemical proxy analysis shows that Archean continental crust was more mafic than previously thought,having greater proportions of basalt and komatiite than modern-day continents.Here,we show via petrological modelling that secular change in the petrology and bulk composition of upper continental crust would make Archean continental terranes negatively buoyant in the mantle before reaching UHP conditions.Subducted or delaminated Archean continental crust passes a point of no return during metamorphism in the mantle prior to the stabilization of coesite,while Proterozoic and Phanerozoic terranes remain positively buoyant at these depths.UHP orogenic eclogite may thus readily have formed on the Archean Earth,but could not have been exhumed,weakening arguments for a Neoproterozoic onset of subduction and plate tectonics.Further,isostatic balance calculations for more mafic Archean continents indicate that the early Earth was covered by a global ocean over 1 km deep,corroborating independent isotopic evidence for large-scale emergence of the continents no earlier than c.3 Ga.Our findings thus weaken arguments that early life on Earth likely emerged in shallow subaerial ponds,and instead support hypotheses involving development at hydrothermal vents in the deep ocean.展开更多
Shear zones in the boundary between Eastern Ghats Province (EGP) and the cratons of Singhbhum in the north and Bastar in the west provide an excellent opportunity to study the tectonics of shear zone development and i...Shear zones in the boundary between Eastern Ghats Province (EGP) and the cratons of Singhbhum in the north and Bastar in the west provide an excellent opportunity to study the tectonics of shear zone development and its timing in relation to the evolutionary history of the granulite suites. Detailed structural, microfabric and quartz C-axis patterns revealed a high temperature shear zone, at the western boundary between EGP and Bastar Craton (BC) around Paikmal. Petrological studies in this shear zone indicated decompression coeval with stretching in the sheared granulites. Geochronological constraints provided here indicate rapid exhumation of deep seated granulites in this boundary shear zone;the timing also is late in relation to the long-lived thermal (granulite formation) event in the EGP. Additionally, our geochronological data demonstrated the ~1600 Ma event in the Eastern Ghats Belt (EGB) involving sedimentation, magmatism, metamorphism and crustal anatexis, as a significant world event.展开更多
1 Introduction The North China Craton(NCC)has experienced lithospheric destruction in Mesozoic accompanied with crustal exhumation.Fission track or(U-Th)/He dating of zircon and apatite for the Mesozoic granitoids in the
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
基金The National Natural Science Foundation of China under contract No.42072181the CNOOC Research Project"Resource Potential,Reservoir Formation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore Basins of China(YXKY-ZX 012021)"。
文摘Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold great potential for exploration.Borehole samples taken from the granite buried hills in the SNLU were analyzed using apatite fission track(AFT)and zircon(U-Th)/He data to unravel the thermal history of the basement rock.This information is crucial for understanding the processes of exhumation and alteration that occurred after its formation.Thermal modeling of a sample from the western bulge of the SNLU revealed a prolonged cooling event from the late Mesozoic to the Oligocene period(~80-23.8 Ma),followed by a heating stage from the Miocene epoch until the present(~23.8 Ma to present).In contrast,the sample from the eastern bulge experienced a more complex thermal history.It underwent two cooling stages during the late Mesozoic to late Eocene period(~80-36.4 Ma)and the late Oligocene period(~30-23.8 Ma),interspersed with two heating phases during the late Eocene to early Oligocene period(~36.4-30 Ma)and the Miocene epoch to recent times(~23.8-0 Ma),respectively.The differences in exhumation histories between the western and eastern bulges during the late Eocene to Oligocene period in the SNLU can likely be attributed to differences in fault activity.Unlike typical passive continental margin basins,the SNLU has experienced accelerated subsidence after the rifting phase,which began around 5.2 Ma ago.The possible mechanism for this abnormal post-rifting subsidence may be the decay or movement of the deep thermal source and the rapid cooling of the asthenosphere.Long-term and multi-episodic cooling and exhumation processes play a key role in the alteration of bedrock and contribute to the formation of reservoirs.On the other hand,rapid post-rifting subsidence(sedimentation)promotes the formation of cap rocks.
基金This study was supported by the National Natural Science Foundation of China grants 49772119 and 49732080.
文摘Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage.
文摘Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.
基金the National 973 Project of Chinese Ministry of Science and Technology (Grant No. 2003CB716502) the Natural Science Foundation of China (Grant No. 40399143) +1 种基金 the German Science Foundation (DFG grant No. GE 1152/2-2 , WE2850/3- 1).
文摘Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃ and P =1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite eclogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃ and P 〉 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600- 710℃ and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245 ± 4 Ma for domain 1, 235 ± 3 Ma for domain 2 and 215± 6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244 ± 4 Ma, 233 ± 4 Ma and 214 ± 5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from - 55 km to 〉 160 km deep mantle depth took place at rates of approximately 9.5-10.5 km/Ma and exhumation from depths 〉160 km to the base of the crust at -30 km occurred at approximately 6.5 km/Ma. We propose a model for these rocks involving deep subduction of continental margin lithosphere followed by ultrafast exhumation driven by buoyancy forces after break-off of the UHP slab deep within the mantle.
基金supported by the State Key Laboratory of Loess and Quaternary Geology(Grant No.SKLLQG0507)National Natural Science Foundation of China(Grant Nos. 40572124 and 40772116)+1 种基金Guangzhou Institute of Geochemistry,Chinese Academy of Sciences(Grant No. 050713)This is contribution No.IS-1157 from GIGCAS
文摘The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhumation by the fission-track method. The results show that, no matter what type rocks are, the pooled ages of zircon and apatite fission-track range from 60.0 to 93.7 Ma and 28.6 to 43.3 Ma, respectively; all of the apatite fission-track length distributions are unimodal and yield a mean length of -13 μm; and the thermal history modeling results based on apatite fission-track data indicate that the time-temperature paths exhibit similar patterns and the cooling has been accelerated for each sample since the Pliocene (c.5 Ma). Therefore, we can conclude that a successive cooling, probably involving two slow (during c.75-35Ma and 35-5Ma) and one rapid (during c.5 Ma-0 Ma) cooling, has occurred through the exhumation of the Liiliang Mountains since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35℃/km. Combined with the tectonic setting, this exhumation may be the resultant effect from the surrounding plate interactions, and it has been accelerated since c.5 Ma predominantly due to the India-Eurasia collision.
基金supported by the National Natural Science Foundation of China (Grants No. 41572102, 41330315, 41102067, and 41172127)China Geological Survey project (Grant No. 121201011000161111-02)
文摘The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track (AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault (LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50~C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with -1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of QinUng Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at -100 Ma.
文摘Abstract: Zircon and apatite fission-track dating indicates that the exhumation of the Dabie Mountains tended to be accelerated in the Cenozoic and that the exhumation of the eastern Dabie Mountains was more and more intense from south to north, which is in accordance with the more and more intense dissection from south to north, as is reflected by the modern geomorphologic features of the Dabie Mountains. The accelerated exhumation during the Cenozoic was related to the high elevation of the Dabie Mountains resulting from Late Cretaceous-Palaeogene detachment faulting and subsequent fault-block uplift and subsidence. The average elevation at that time was at least about 660 m higher than that at the present. The intense exhumation lagged behind intense uplift.
基金supported by research grants from Universita di Torino (Ricerca Locale "ex 60%" 2014—2018)the Italian Ministry of University and Research ("Finanziamento annuale individuale delle attivita base di ricerca" 2017) to A.Festa and G.Balestro, and from "Comune di Tavagnasco" to S.De Caroli and A.Succo
文摘The Canavese Zone(CZ)in the Western Alps represents the remnant of the distal passive margin of the Adria microplate,which was stretched and thinned during the Jurassic opening of the Alpine Tethys.Through detailed geological mapping,stratigraphic and structural analyses,we document that the continental break-up of Pangea and tectonic dismemberment of the Adria distal margin,up to mantle rocks exhumation and oceanization,did not simply result from the syn-rift Jurassic extension but was strongly favored by older structu ral inheritances(the Proto-Canavese Shear Zone),which controlled earlier lithospheric weakness.Our findings allowed to redefine in detail(i)the tectono-stratigraphic setting of the Variscan metamorphic basement and the Late Carbonife rous to Early Cretaceous CZ succession,(ii)the role played by inherited Late Carboniferous to Early Triassic structures and(iii)the significance of the CZ in the geodynamic evolution of the Alpine Tethys.The large amount of extensional displacement and crustal thinning occurred during different pulses of Late Carbonife rous-Early Triassic strike-slip tectonics is wellconsistent with the role played by long-lived regional-scale wrench faults(e.g.,the East-Variscan Shear Zone),suggesting a re-discussion of models of mantle exhumation driven by low-angle detachment faults as unique efficient mechanism in stretching and thinning continental crust.
基金supported by the State Science and Technology Major Project(2009ZX05009-001)
文摘Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0 13.2 μm) mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassic-early Cretaceous and the Oligocene-Miocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (〉100 Ma), recording the earlier rapid uplift phase during the late Jurassic-Cretaceous, while the ages in the north pied- mont of the Bogda Mountain (namely the northeast part) are younger (〈60 Ma), mainly reflecting the later rapid uplift phase in the Oligocene-Miocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.
基金the officers and expeditioners of CNARE(Chinese National Antarctic Research Expedition) for their assistance during the 2002/2003 field seasonLogistical support by the Arctic and Antarctic Administration of China and financial supports by the National Tenth Five-Year Project for Antarctic Sciences (No.2001DIA50040)the Basic Research Foundation of the Institute of Geomechanics,CAGS (DZLXJK200703)
文摘Does Cenozoic exhumation occur in the Larsemann Hills, East Antarctica? In the present paper, we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica. Our work reveals a Cenozoic exhumation event at 49.8 ± 12 Ma, which we interpret to be a result of exhumation caused by crustal extension. Within the uncertainty of our age determination, the timing of extension in East Antarctica determined by our study is coeval with the onset time of rifting in West Antarctica at c.55 Ma. The apatite fission-track cooling ages vary systematically in space, indicating a coherent block rotation of the Larsemann Hills region from c.50 Ma to c.10 Ma. This pattern of block tilting was locally disrupted by normal faulting along the Larsemann Hills detachment fault at c.5.4 Ma. The regional extension in the Larsemann Hills, East Antarctica was the result of tectonic evolution in this area, and may be related to the global extension. Through the discussion of Pan-Gondwanaland movement, and Mesozoic and Cenozoic extensions in West and East Antarctica and adjacent areas, we suggest that the protracted Cenozoic cooling over the Larsemann Hills area was caused by extensional tectonics related to separation and formation of the India Ocean at the time of Gondwanaland breakup.
基金supported by the DREAM project of MOST China (2016YFC0600406)the National Natural Science Foundation of China (Grant Nos. 41072158, 41372227)
文摘The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subduction・related magmatic activities and subsequent exhumation processes occurred.Here,we report new low-temperature thermochronology of apatite and zircon data from the granitoid samples in the Yanji area.The exhumation rates of Tianfozhishan,Yanji area,were〜0.049 and〜0.073 mm/year,interpreted from the elevations and apatite and zircon fission track ages,respectively.The exhumation,integrated with the geological setting,suggested that the paleogeothermal gradient of the Tianfozhishan,even extending to the Yanji area,was possibly to be greater than 35℃/km in the Late Cretaceous.The thermal history modeling of the data indicates a basically similar pattern,but the various timing for different samples between the Oligocene-Early Miocene and the Middle Miocene in the Yanji area.We hence conclude that a fourstages of cooling,from〜6.7℃/Ma(during the Late Cretaceous),to〜0.8℃/Ma(during the Late Cretaceous to the Oligocene-Early Miocene),then to〜2-3℃/Ma with varied styles(between the Oligocene-Early Miocene and the Middle Miocene),and finally to<0.2℃/Ma(since the Middle Miocene),has taken place through the exhumation of the Yanji area.The maximum exhumation is>3 km under a reasonable paleogeothermal gradient(>35℃/km),speculated from the possible exhumation rate of Tianfozhishan.Combined with the tectonic setting,this exhumation,including two stages of pronounced tectonic uplift and denudation and two stages of weak exhumation driven by the low regional erosion rate,is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the Late Cretaceous.This study used more robust evidence to propose higher paleogeothermal gradient(>35℃/km),reflecting exhumation of>3 km in the Yanji area since the Late Cretaceous.
文摘The Xigaze ophiolite crops out in the central segment of the Yarlung Zangbo suture zone,southern Tibet(Fig.1).It is characterized by large amounts of ultramafic units with minor mafic rocks.The mafic rocks consist of gabbros,
基金financially supported by National Key R&D Program of China(2018YFC0604101,2018YFC0604106)National Natural Science Foundation of China(41902095)。
文摘In order to understand how the metallogenic process of porphyry deposit specifically and directly respond to regional uplifting and exhumation,we compiled previous fluid inclusion data of 32 porphyry deposits in China by recalculating the fluid trapping depths and trapping depth reduction magnitude from early to late mineralization stage veins.The data reveal that the average trapping pressure ratio(Ave TP_(E)/TP_(L))between early-and late-stage veins of the these deposits are 1.2-18.4,mainly in the range of 1.35-5.83,with average trapping pressure reduction(1-Ave TP_(L)/TP_(E))from early-to late-stage veins are 17%-95%,and mainly in the range of 25%-83%.The fluid trapping pressure based mineralization depths most of the porphyry deposits in China had decreased from early to late vein stages by at least 450 m(900-5800 m predominant),or greater than 950 m when take the average depth reduction value,which is greater than the current gap between early-and late-stage veins of each deposit.We propose that the apparently greater mineralization depth reduction magnitude than the current elevation gaps between early and late veins are likely a consequence of synmineralization uplifting and exhumation process that often occurs in porphyry systems.
基金financially supported by the National Nature Science Foundation of China (grant No.41572053)
文摘Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.
文摘The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e.g., quartz needles in Na-clinopyroxene and rutile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called “double symplectite” here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g., omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.
基金financially supported by the National Natural Science Foundation of China (grants No. 41402099 and No. 40972084)
文摘Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains
文摘The absence of ultrahigh pressure(UHP)orogenic eclogite in the geological record older than c.0.6 Ga is problematic for evidence of subduction having begun on Earth during the Archean(4.0-2.5 Ga).Many eclogites in Phanerozoic and Proterozoic terranes occur as mafic boudins encased within low-density felsic crust,which provides positive buoyancy during subduction;however,recent geochemical proxy analysis shows that Archean continental crust was more mafic than previously thought,having greater proportions of basalt and komatiite than modern-day continents.Here,we show via petrological modelling that secular change in the petrology and bulk composition of upper continental crust would make Archean continental terranes negatively buoyant in the mantle before reaching UHP conditions.Subducted or delaminated Archean continental crust passes a point of no return during metamorphism in the mantle prior to the stabilization of coesite,while Proterozoic and Phanerozoic terranes remain positively buoyant at these depths.UHP orogenic eclogite may thus readily have formed on the Archean Earth,but could not have been exhumed,weakening arguments for a Neoproterozoic onset of subduction and plate tectonics.Further,isostatic balance calculations for more mafic Archean continents indicate that the early Earth was covered by a global ocean over 1 km deep,corroborating independent isotopic evidence for large-scale emergence of the continents no earlier than c.3 Ga.Our findings thus weaken arguments that early life on Earth likely emerged in shallow subaerial ponds,and instead support hypotheses involving development at hydrothermal vents in the deep ocean.
文摘Shear zones in the boundary between Eastern Ghats Province (EGP) and the cratons of Singhbhum in the north and Bastar in the west provide an excellent opportunity to study the tectonics of shear zone development and its timing in relation to the evolutionary history of the granulite suites. Detailed structural, microfabric and quartz C-axis patterns revealed a high temperature shear zone, at the western boundary between EGP and Bastar Craton (BC) around Paikmal. Petrological studies in this shear zone indicated decompression coeval with stretching in the sheared granulites. Geochronological constraints provided here indicate rapid exhumation of deep seated granulites in this boundary shear zone;the timing also is late in relation to the long-lived thermal (granulite formation) event in the EGP. Additionally, our geochronological data demonstrated the ~1600 Ma event in the Eastern Ghats Belt (EGB) involving sedimentation, magmatism, metamorphism and crustal anatexis, as a significant world event.
基金supported by the National Natural Science Foundation of China (Grant No. 41230311)National Key Research and Development Program of China (Grant No. 2016YFC0600106)
文摘1 Introduction The North China Craton(NCC)has experienced lithospheric destruction in Mesozoic accompanied with crustal exhumation.Fission track or(U-Th)/He dating of zircon and apatite for the Mesozoic granitoids in the