Triterpenoids widely exist in nature,displaying a variety of pharmacological activities.Determining triterpenoids in different matrices,especially in biological samples holds great significance.High-performance liquid...Triterpenoids widely exist in nature,displaying a variety of pharmacological activities.Determining triterpenoids in different matrices,especially in biological samples holds great significance.High-performance liquid chromatography(HPLC)has become the predominant method for triterpenoids analysis due to its exceptional analytical performance.However,due to the structural similarities among botanical samples,achieving effective separation of each triterpenoid proves challenging,necessitating significant improvements in analytical methods.Additionally,triterpenoids are characterized by a lack of ultraviolet(UV)absorption groups and chromophores,along with low ionization efficiency in mass spectrometry.Consequently,routine HPLC analysis suffers from poor sensitivity.Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance.Considering the structural characteristics of triterpenoids,various derivatization reagents such as acid chlorides,rhodamines,isocyanates,sulfonic esters,and amines have been employed for the derivatization analysis of triterpenoids.This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids.Moreover,the limitations and challenges encountered in previous studies are discussed,and future research directions are proposed to develop more effective derivatization methods.展开更多
Four new 14(13→12)-abeolanostane triterpenoids featuring extendedπ-conjugated systems,kadcoccitanes E-H(1-4),were obtained from the stems of Kadsura coccinea through using a HPLC−UV-guided approach.Their structural ...Four new 14(13→12)-abeolanostane triterpenoids featuring extendedπ-conjugated systems,kadcoccitanes E-H(1-4),were obtained from the stems of Kadsura coccinea through using a HPLC−UV-guided approach.Their structural and configurational determination was accomplished through extensive spectroscopic analysis coupled with quantum chemical calculations.Kadcoccitanes E-H were tested for their cytotoxic activities against five human tumor cell lines(HL-60,A-549,SMMC-7721,MDA-MB-231,SW-480)but none of them exhibited activities at the concentration 40μM.展开更多
基金Sichuan Science and Technology Program(Grant No.:2022ZYD0026)Biological Resources Program,Chinese Academy of Sciences(Grant No.:KFJ-BRP-008-007)the Macao Science and Technology Development Fund(Grant No.:0028/2019/AGJ).
文摘Triterpenoids widely exist in nature,displaying a variety of pharmacological activities.Determining triterpenoids in different matrices,especially in biological samples holds great significance.High-performance liquid chromatography(HPLC)has become the predominant method for triterpenoids analysis due to its exceptional analytical performance.However,due to the structural similarities among botanical samples,achieving effective separation of each triterpenoid proves challenging,necessitating significant improvements in analytical methods.Additionally,triterpenoids are characterized by a lack of ultraviolet(UV)absorption groups and chromophores,along with low ionization efficiency in mass spectrometry.Consequently,routine HPLC analysis suffers from poor sensitivity.Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance.Considering the structural characteristics of triterpenoids,various derivatization reagents such as acid chlorides,rhodamines,isocyanates,sulfonic esters,and amines have been employed for the derivatization analysis of triterpenoids.This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids.Moreover,the limitations and challenges encountered in previous studies are discussed,and future research directions are proposed to develop more effective derivatization methods.
基金Natural Science Foundation of Yunnan Province(202101AT070188).
文摘Four new 14(13→12)-abeolanostane triterpenoids featuring extendedπ-conjugated systems,kadcoccitanes E-H(1-4),were obtained from the stems of Kadsura coccinea through using a HPLC−UV-guided approach.Their structural and configurational determination was accomplished through extensive spectroscopic analysis coupled with quantum chemical calculations.Kadcoccitanes E-H were tested for their cytotoxic activities against five human tumor cell lines(HL-60,A-549,SMMC-7721,MDA-MB-231,SW-480)but none of them exhibited activities at the concentration 40μM.