Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typicall...Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.展开更多
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop...The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.展开更多
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-p...In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of t...The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.展开更多
Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely a...Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.展开更多
Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In partic...Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.展开更多
The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid ...The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.展开更多
We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we w...We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we will construct an example with a finite time cusp singularity due to the quasilinearity of the wave equation,extended from an earlier resultonaspecial case.展开更多
Ferro nematic suspensions are the prominent materials to enhance the electro optical performance of liquid crystal displays. Electro optical properties of polymer dispersed liquid crystal (PDLC) display with the intro...Ferro nematic suspensions are the prominent materials to enhance the electro optical performance of liquid crystal displays. Electro optical properties of polymer dispersed liquid crystal (PDLC) display with the introduction of Barium Titanate nanoparticles have been investigated in this article and it is shown that there is a considerable enhancement in electro-optical response of the displays. The nanoparticles lower the switch-on electric field and thereby increase the optical transmission at certain voltages of the displays. The electro-optical characteristics of the PDLC cells were investigated with a He-Ne laser followed by MatLab calculations.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
In this paper a novel method is proposed to determine the cell parameters including the twist angle, optic retardation and rubbing direction of twisted-nematic liquid crystal displays (TNLCD) by rotating the TNLCD. ...In this paper a novel method is proposed to determine the cell parameters including the twist angle, optic retardation and rubbing direction of twisted-nematic liquid crystal displays (TNLCD) by rotating the TNLCD. It is a single-wavelength method. Because using subtraction equation of transmittance as curve fitting equation, the influence of the light from environment and the absorption by polarizer, the sample of TNLCD and analyser on the transmittance is eliminated. Accurate results can also be obtained in imperfect darkness. By large numbers of experiments, we found that not only the experimental setup is quite simple and can be easily adopted to be carried out, but also the results are accurate.展开更多
We report on generating uniaxial negative birefringent compensation films, made of specifically designedpolyimides. These polymers were synthesized via a polycondensation of dianhydride [such as 2, 2' -bis(3, 4-di...We report on generating uniaxial negative birefringent compensation films, made of specifically designedpolyimides. These polymers were synthesized via a polycondensation of dianhydride [such as 2, 2' -bis(3, 4-dicarboxyphenyl)hexafluoropropane dianhydride] and 2, 2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. The uniaxial negative birefringent (n_x =n_y > n_z) polyimide substrates are achieved using a solution-casting method in conventional solvents, which exhibit thedesirable optical phase retardation [(n_x - n_z)×d] values from 50 to 400 nm varying with the film thickness. In thesepolyimide films, the long chain rigid molecules adopt intrinsic planar orientaion. In detail, the majority of phenylene-imiderings and phenylenes preferentially adopt nearly planar conformations parallel to the film substrae. In addition, these filmsalso possess high transparency (or transmittance) and little color shift. The unique color dispersion curve indicates that thistype of materials is very suitable for the applications in LCDs due to an excellent mimic for the retardation color dispersioncurve with respect to LC molecules. Significantly low in-plane retardation (< 1 nm) allows this new technology based film toachieve sufficiently high contrast ratio while highly negative retardation dramatically suppresses the gray scale inversion toimprove the viewing angle performance in a variety of new mode LCDs.展开更多
The disadvantages of Normally White Twisted Nematic Liquid Crystal Display (NW-TN-LCD) were discussed. The reason that the negative birefringent polyimide thin films were used to compensate NW-TN-LCD to decrease off-a...The disadvantages of Normally White Twisted Nematic Liquid Crystal Display (NW-TN-LCD) were discussed. The reason that the negative birefringent polyimide thin films were used to compensate NW-TN-LCD to decrease off-axis leakage, improve contrast ratios and enlarge viewing angles was explained in this paper. A certain polyimide thin film was taken as an example to show compensation effect on NW-TN-LCD.展开更多
A transflective polymer-stabilized blue-phase liquid crystal display(BP-LCD) with a non-uniform etching substrate is proposed.In-plane switching(IPS) electrodes on the bottom substrate are put on the different gap...A transflective polymer-stabilized blue-phase liquid crystal display(BP-LCD) with a non-uniform etching substrate is proposed.In-plane switching(IPS) electrodes on the bottom substrate are put on the different gaps,and the bottom substrate between the electrodes is etched into different depths in transmissive(T) and reflective(R) regions.This structure can balance the optical phase retardation in the two regions and is helpful to achieve well-matched voltag-dependent transmittance and reflectance curves.This transflective display has high optical efficiency,a wide viewing angle,and low operating voltage(approximately 6 V).展开更多
A novel see-through display with a liquid crystal lens array was proposed.A liquid crystal Fresnel lens display(LCFLD) with a holographic screen was demonstrated.The proposed display system has high efficiency,simpl...A novel see-through display with a liquid crystal lens array was proposed.A liquid crystal Fresnel lens display(LCFLD) with a holographic screen was demonstrated.The proposed display system has high efficiency,simple fabrication,and low manufacturing cost due to the absence of a polarizer and color filter.展开更多
A color image formation method is p re sented with thermosensitive liquid crystal polymers. The liquid crystal polymers are capable of reversibly assuming optical states of transparent and scattering lights, and allow...A color image formation method is p re sented with thermosensitive liquid crystal polymers. The liquid crystal polymers are capable of reversibly assuming optical states of transparent and scattering lights, and allow picture-element display areas in two colors at least to be co mposed on a surface. The picture elements within color areas are selected if they correspond to the color which is the spectral transmission center. A heat is applied such that the maximum haze degree of the selected picture elements is greater than that of picture elements corresponding to any of the other colo rs.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,the Samsung Research Funding&Incubation Center for Future Technology grant(SRFC-IT1901-52)funded by Samsung Electronicsthe National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A-02074314,NRF-2022M3H4A1A02046445,NRF-2021M3H4A1A04086357,NRF-2019R1A5A8080290,RS-2024-00356928,RS-2023-00283667)funded by the Ministry of Science and ICT of the Korean governmentthe Korea Evaluation Institute of Industrial Technology(KEIT)grant(No.1415185027/20019169,Alchemist project)funded by the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government.H.Kim and J.Kim acknowledge the POSTECH Alchemist fellowship,the Asan Foundation Biomedical Science fellowship,and Presidential Science fellowship funded by the MSIT of the Korean government.
文摘Metasurfaces have opened the door to next-generation optical devices due to their ability to dramatically modulate electromagnetic waves at will using periodically arranged nanostructures.However,metasurfaces typically have static optical responses with fixed geometries of nanostructures,which poses challenges for implementing transition to technology by replacing conventional optical components.To solve this problem,liquid crystals(LCs)have been actively employed for designing tunable metasurfaces using their adjustable birefringent in real time.Here,we review recent studies on LCpowered tunable metasurfaces,which are categorized as wavefront tuning and spectral tuning.Compared to numerous reviews on tunable metasurfaces,this review intensively explores recent development of LC-integrated metasurfaces.At the end of this review,we briefly introduce the latest research trends on LC-powered metasurfaces and suggest further directions for improving LCs.We hope that this review will accelerate the development of new and innovative LC-powered devices.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1405000)the National Natural Science Foundation of China (Grant No.62375141)+1 种基金the Natural Science Foundation of Jiangsu Province,Major Project (Grant No.BK20212004)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos.NY222122 and NY222105)。
文摘The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
基金partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100523,KJQN202000536)the National Natural Science Foundation of China(12001074)+3 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0606)supported by the National Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0278)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202100503)the Research Project of Chongqing Education Commission(CXQT21014)。
文摘In this paper,we are concerned with a three-dimensional non-isothermal model for the compressible nematic liquid crystal flows in a periodic domain.Under some smallness and structural assumptions imposed on the time-periodic force,we establish the existence of the time-periodic solutions to the system by using a regularized approximation scheme and the topological degree theory.We also prove a uniqueness result via energy estimates.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
文摘The purpose of study was to evaluate the effect of four powder including titanium dioxide,bismuth oxychloride,silica,and kaolin on the properties of the liquid crystal emulsions.The results show that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the liquid crystal structure.In addition,the addition of Kaolin and silica have an effect on the stability of the liquid crystal structure.Sensory evaluation and Texture analyzer results shown that the addition of titanium dioxide and bismuth oxychloride had no obvious effect on the spreadability of liquid crystal system.The addition of silica and Kaolin was increased the hardness and adhesive of the liquid crystal system.Rheological experiments shown that the kaolin system had lower structural stability.the system with titanium dioxide,bismuth oxychloride,and silica has good stability.This paper provides data support for the application of powders in the formulation of liquid crystal system,which aims to provide a data basis for the preparation and applications of liquid crystal emulsion.
基金the supports from the National Natural Science Foundation of China (61905073, 61835004, 62134001, 61905031, 62105263, 62275077)Fundamental Research Fund for the Central Universities (531118010189, 310202011qd002)+1 种基金the support from Xi’an Science and Technology Association Youth Talent Support Project (095920211306)the Postdoctoral Innovation Talent Support Program of China (BX20220388)
文摘Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.
基金supports from National Natural Science Foundation of China (No.62235009).
文摘Spatial light modulators,as dynamic flat-panel optical devices,have witnessed rapid development over the past two decades,concomitant with the advancements in micro-and opto-electronic integration technology.In particular,liquid-crystal spatial light modulator(LC-SLM)technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude.These devices have gained significant interest in the nascent field of structured light in space and time,facilitated by their ease of use and real-time light manipulation,fueling both fundamental research and practical applications.Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications,covering topics as diverse as beam shaping and steering,holography,optical trapping and tweezers,measurement,wavefront coding,optical vortex,and quantum optics.Finally,we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
文摘The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.
文摘We consider the Poiseuille flow of nematic liquid crystals via the full Ericksen-Leslie model.The model is described by a coupled system consisting of a heat equation and a quasilinear wave equation.In this paper,we will construct an example with a finite time cusp singularity due to the quasilinearity of the wave equation,extended from an earlier resultonaspecial case.
文摘Ferro nematic suspensions are the prominent materials to enhance the electro optical performance of liquid crystal displays. Electro optical properties of polymer dispersed liquid crystal (PDLC) display with the introduction of Barium Titanate nanoparticles have been investigated in this article and it is shown that there is a considerable enhancement in electro-optical response of the displays. The nanoparticles lower the switch-on electric field and thereby increase the optical transmission at certain voltages of the displays. The electro-optical characteristics of the PDLC cells were investigated with a He-Ne laser followed by MatLab calculations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金Project supported by the National Natural Science Foundation of China(Grant No60576056)
文摘In this paper a novel method is proposed to determine the cell parameters including the twist angle, optic retardation and rubbing direction of twisted-nematic liquid crystal displays (TNLCD) by rotating the TNLCD. It is a single-wavelength method. Because using subtraction equation of transmittance as curve fitting equation, the influence of the light from environment and the absorption by polarizer, the sample of TNLCD and analyser on the transmittance is eliminated. Accurate results can also be obtained in imperfect darkness. By large numbers of experiments, we found that not only the experimental setup is quite simple and can be easily adopted to be carried out, but also the results are accurate.
基金This work was supported by the NSF Science and Technology Center of Advanced Liquid Crystalline Optical Materials (ALCOM, DMR-91-57738) and Nitto Denko America as well as NSF DMR0203994.
文摘We report on generating uniaxial negative birefringent compensation films, made of specifically designedpolyimides. These polymers were synthesized via a polycondensation of dianhydride [such as 2, 2' -bis(3, 4-dicarboxyphenyl)hexafluoropropane dianhydride] and 2, 2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl. The uniaxial negative birefringent (n_x =n_y > n_z) polyimide substrates are achieved using a solution-casting method in conventional solvents, which exhibit thedesirable optical phase retardation [(n_x - n_z)×d] values from 50 to 400 nm varying with the film thickness. In thesepolyimide films, the long chain rigid molecules adopt intrinsic planar orientaion. In detail, the majority of phenylene-imiderings and phenylenes preferentially adopt nearly planar conformations parallel to the film substrae. In addition, these filmsalso possess high transparency (or transmittance) and little color shift. The unique color dispersion curve indicates that thistype of materials is very suitable for the applications in LCDs due to an excellent mimic for the retardation color dispersioncurve with respect to LC molecules. Significantly low in-plane retardation (< 1 nm) allows this new technology based film toachieve sufficiently high contrast ratio while highly negative retardation dramatically suppresses the gray scale inversion toimprove the viewing angle performance in a variety of new mode LCDs.
基金Supported by’94 Outstanding Young Scientist Foundation of NSFC
文摘The disadvantages of Normally White Twisted Nematic Liquid Crystal Display (NW-TN-LCD) were discussed. The reason that the negative birefringent polyimide thin films were used to compensate NW-TN-LCD to decrease off-axis leakage, improve contrast ratios and enlarge viewing angles was explained in this paper. A certain polyimide thin film was taken as an example to show compensation effect on NW-TN-LCD.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61535007 and 61320106015)the National Basic Research Program of China(Grant No.2013CB328802)
文摘A transflective polymer-stabilized blue-phase liquid crystal display(BP-LCD) with a non-uniform etching substrate is proposed.In-plane switching(IPS) electrodes on the bottom substrate are put on the different gaps,and the bottom substrate between the electrodes is etched into different depths in transmissive(T) and reflective(R) regions.This structure can balance the optical phase retardation in the two regions and is helpful to achieve well-matched voltag-dependent transmittance and reflectance curves.This transflective display has high optical efficiency,a wide viewing angle,and low operating voltage(approximately 6 V).
基金Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST,Chinathe National Natural Science Foundation of China(Grant Nos.61435008 and 61575063)the Fundamental Research Funds for the Central Universities,China(Grant No.WM1514036)
文摘A novel see-through display with a liquid crystal lens array was proposed.A liquid crystal Fresnel lens display(LCFLD) with a holographic screen was demonstrated.The proposed display system has high efficiency,simple fabrication,and low manufacturing cost due to the absence of a polarizer and color filter.
文摘A color image formation method is p re sented with thermosensitive liquid crystal polymers. The liquid crystal polymers are capable of reversibly assuming optical states of transparent and scattering lights, and allow picture-element display areas in two colors at least to be co mposed on a surface. The picture elements within color areas are selected if they correspond to the color which is the spectral transmission center. A heat is applied such that the maximum haze degree of the selected picture elements is greater than that of picture elements corresponding to any of the other colo rs.