This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights o...In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights on bifurcation and stability, also obtain some conditions for subcfitical and supercritical. Finally, we give some numerical simulation studies of system in order to verify analytic results.展开更多
In this paper, the phase-portraits of plane homogeneous polynomial vector fields are studied and some formulae for the calculation of the number of different global phase-portraits of plane homogeneous polynomial vect...In this paper, the phase-portraits of plane homogeneous polynomial vector fields are studied and some formulae for the calculation of the number of different global phase-portraits of plane homogeneous polynomial vector fields are given. Some necessary and sufficient conditions for the global stability of these vector fields are derived.展开更多
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
文摘We show how to use the Lucas polynomials of the second kind in the solution of a homogeneous linear differential system with constant coefficients, avoiding the Jordan canonical form for the relevant matrix.
文摘In this paper, we analyze a three-dimensional differential system derived from the Chen system based on the first Lyapunov coefficient, and apply it to investigate the local bifurcation. And we present some insights on bifurcation and stability, also obtain some conditions for subcfitical and supercritical. Finally, we give some numerical simulation studies of system in order to verify analytic results.
文摘In this paper, the phase-portraits of plane homogeneous polynomial vector fields are studied and some formulae for the calculation of the number of different global phase-portraits of plane homogeneous polynomial vector fields are given. Some necessary and sufficient conditions for the global stability of these vector fields are derived.