Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were opti...Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat.展开更多
A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ...A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).展开更多
A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using r...A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.展开更多
The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yiel...The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Und...In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L - 137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88% - 91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.展开更多
In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 wa...In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation, A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.展开更多
Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae muta...Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 ×10^15 ions/cm^2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38℃ and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.展开更多
In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with ...In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.展开更多
The objective of this study was to isolate lactic acid bacteria(LAB) strains from different origins and to select the best strains for ensiling Robinia pseudoacacia(RB) and Morus alba L.(MB)leaves. The LAB strai...The objective of this study was to isolate lactic acid bacteria(LAB) strains from different origins and to select the best strains for ensiling Robinia pseudoacacia(RB) and Morus alba L.(MB)leaves. The LAB strains were inoculated into the extracted liquid obtained from RB and MB leaves to evaluate the fermentation products. 11 LAB strains were selected for further experiments based on the highest products of lactic or acetic acid, including 1 strain of Weissella confusa, 2 of Lactobacillus reuteri and 8 of Lactobacillus plantarum.The API 50 CH fermentation experiment indicated that all of the selected 11 LAB strains utilised most of the carbohydrates. All the strains grew at temperatures between 10 and 45℃ and at a p H of 3.5 to 4.5; however, L. reuteri F7 and F8 tolerated a p H as low as 3.0. All 11 LAB strains showed antibacterial activity against Listeria monocytogens, Escherichia coil, Salmonella sp. and Acetobacter pasteurianus; however, after excluding the effect of organic acids, only F7 and F8 still exhibited antibacterial activity. The present study indicated that the selected 11 LAB strains could be used to prepare silages of RB and MB leaves, especially L. reuteri F7 and F8.展开更多
Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold wa...Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold was characterized by ATR-FTIR and SEM. The scaffold has a better graft efficiency and has a dense inner layer and a loose outer layer with porous structure, and the pore size is about 100 μm.The NGF release properties of the scaffold were investigated. The experimental results showed that, at the 1st day, 15.2 ng of NGF on average was released from the scaffold. From day 2 to day 10, the release rate obviously slowed down and 1.64 ng of NGF was released on average every day. After 10 days, the release rate was slower and 10.3 ng of NGF was released on average every day. After 60 days, NGF could also maintained a certain concentration. These properties show that the scaffold is a better carrier for NGF which can be more advantageous to the regeneration of the damaged peripheral nerve. As a result, this composite scaffold would be an ideal candidate for the regeneration of damaged peripheral nerve.展开更多
In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation...In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal con- ditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.展开更多
L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphen...L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.展开更多
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were...In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.展开更多
The effect ofcultivation conditionson the opticalpurity ofL(+)-lactic acid produced by Rhizopusoryzae HZS6 from corncob hydrolysate was investigated. The isomeric composition of lactic acid was influenced by the suppl...The effect ofcultivation conditionson the opticalpurity ofL(+)-lactic acid produced by Rhizopusoryzae HZS6 from corncob hydrolysate was investigated. The isomeric composition of lactic acid was influenced by the supplementation of L(+)-lactic acid to fermentation medium. L(+)-Isomer increased with the dosage,no(-)-lactic acid was observed when the concentration of supplemented L(+)-lactic acid in matrix was≥1.5g l-1. However,the L(+)-lactic acid yield decreased with the dosage. Under suitable conditions,100g l-1 initial corncob xylose,2g l-1 NH4NO3,1.5 g l-1 supplemented L(+)-lactic acid,R. oryzae HZS6 could produce 100% L(+)-form lactic acid with the yield of 75% and final concentration of 81.2 g l-1,at pH 6.0 and temperature 34℃.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘Repeated-batch and continuous production of L-lactic acid by immobilized Rhizopusoryzae with calcium alginate entrapment method in a three-phase fluidized-bed bioreactor was stud-ied.The operation conditions were optimized.The productivity based on total reactor volume wasabout 3 times higher than that with free cells in a traditional stirred tank bioreactor.A mathemat-ical model was proposed and the model predictions were in good agreement with the experimentaldat.
基金This study was supported by the National Natural Science Foundation of China(No.30270395 and 30300084)the National"863"Project(No.2003AA32X210).
文摘A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).
基金Supported by the National Natural Science Foundation of China.
文摘A rotating disk contactor(RDC)was designed to perform L-lactic acid fermentation with afilamentous fungi,Rhizopus oryzae,which was immobilized on the surfaces of the rotating discs.Thebioreactor was operated using repeated-batch method as well as continuous feeding method.Ananionic resin,D354,slightly basic in nature and of high selectivity and capacity was chosen for lacticacid separation.A coupled process of L-lactic acid fermentation and ion-exchange separation wasevaluated experimentally.The results indicated that the pH value of the fermentation broth could bemaintained at about 3-3.5 without any addition of alkali.The conversion ratio of glucose to L-lacticacid was about 0.7 g·g<sup>-1</sup> and the fermentation rate reached as high as 62.5 g·h<sup>-1</sup>·m<sup>-2</sup>.
基金National Natural Science Foundation of China(No.20576132)
文摘The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8×10^14 ~ 2.08 ×10^15 ions/cm^2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.
基金The project supported by the Tenth Five-Year Plan Period National Key Technologies R & D Program of China (under GrantNo. 2001BA302B)
文摘In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae RF3608 was mutated by means of nitrogen ion beam implantation and the mutant strain RLC41-6 was isolated. Under optimal conditions the yield of L(+)-lactic acid produced in a shake-flask reached 133 g/L - 137 g/L after 36 h cultivation, indicating that the conversion rate based on glucose was as high as 88% - 91% and the productivity was 3.75 g/L.h. It was almost a 115% increase in lactic acid production compared with the original strain RF3608.
基金supported by the Key‘863’Fund of China (No.2006AA020102)Key Technology Research and Development Program of Anhui Province in 2007 (No.07010202076)
文摘In order to obtain an industrial strain with a higher L(+)-lactic acid yield, the strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion beam implantation and the mutant strain Rhizopus oryzae RLC41-6 was obtained. An experimental finding was made in surprise that Rhizopus oryzae mutant RLC41-6 is not only an L(+)-lactic acid producer from corn starch but also an efficient producer of L(+)-lactic acid from xylose. Under optimal conditions, the production of L(+)-lactic acid from 100 g/L xylose reached 77.39 g/L after 144 h fed-batch fermentation, A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment.
基金Key 863 fund of China(No.2006AA020102)the Key Technologies Research and Development Programme of Anhui Province(07010202076)
文摘Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 ×10^15 ions/cm^2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38℃ and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.
基金The authors thank the Ministry of Science and Technology,the National Natural Science Foundation of China and the Ministry of Education of China for supporting of this research(Grant No.G199905305,59973014 and 98005620,respectively).
文摘In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.
基金supported by the Key Technique Project from Henan Province, China (152102110045 and 152102310064)
文摘The objective of this study was to isolate lactic acid bacteria(LAB) strains from different origins and to select the best strains for ensiling Robinia pseudoacacia(RB) and Morus alba L.(MB)leaves. The LAB strains were inoculated into the extracted liquid obtained from RB and MB leaves to evaluate the fermentation products. 11 LAB strains were selected for further experiments based on the highest products of lactic or acetic acid, including 1 strain of Weissella confusa, 2 of Lactobacillus reuteri and 8 of Lactobacillus plantarum.The API 50 CH fermentation experiment indicated that all of the selected 11 LAB strains utilised most of the carbohydrates. All the strains grew at temperatures between 10 and 45℃ and at a p H of 3.5 to 4.5; however, L. reuteri F7 and F8 tolerated a p H as low as 3.0. All 11 LAB strains showed antibacterial activity against Listeria monocytogens, Escherichia coil, Salmonella sp. and Acetobacter pasteurianus; however, after excluding the effect of organic acids, only F7 and F8 still exhibited antibacterial activity. The present study indicated that the selected 11 LAB strains could be used to prepare silages of RB and MB leaves, especially L. reuteri F7 and F8.
基金Funded by the State Basic Research Foundation of China (No.2005CB623905)
文摘Chitosan—L-lactic acid composite scaffold for the regeneration of peripheral nerve is obtained by grafting L-lactic acid onto the amino groups in chitosan with combined vacuum freezer drier. The composite scaffold was characterized by ATR-FTIR and SEM. The scaffold has a better graft efficiency and has a dense inner layer and a loose outer layer with porous structure, and the pore size is about 100 μm.The NGF release properties of the scaffold were investigated. The experimental results showed that, at the 1st day, 15.2 ng of NGF on average was released from the scaffold. From day 2 to day 10, the release rate obviously slowed down and 1.64 ng of NGF was released on average every day. After 10 days, the release rate was slower and 10.3 ng of NGF was released on average every day. After 60 days, NGF could also maintained a certain concentration. These properties show that the scaffold is a better carrier for NGF which can be more advantageous to the regeneration of the damaged peripheral nerve. As a result, this composite scaffold would be an ideal candidate for the regeneration of damaged peripheral nerve.
基金the Eleventh Five-Year Planthe National 863 Program(No.2006AA020101)
文摘In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal con- ditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.
基金National High-Tech Research and Development Program of China ( 863 Program ) ( No. 2007AA03Z336) Program for New Century Excellent Talents in University,China ( No. NCET-07-0174) +1 种基金National Natural Science Foundations of China ( No. 21074021,No.50673018) The Fundamental Research Funds for the Central Universities ( No. 2011D10543)
文摘L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer.
基金supported by the National Natural Science Foundation of China,No.51073072the Natural Science Foundation of Zhejiang Province in China,No.Y4100745+1 种基金the Key Laboratory Open Foundation of Advanced Textile Materials&Manufacturing Technology of Zhejiang Sci-Tech University from Ministry of Education of China,No.2009007the Science and Technology Commission of Jiaxing Municipality Program,No.2010AY1089
文摘In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.
文摘The effect ofcultivation conditionson the opticalpurity ofL(+)-lactic acid produced by Rhizopusoryzae HZS6 from corncob hydrolysate was investigated. The isomeric composition of lactic acid was influenced by the supplementation of L(+)-lactic acid to fermentation medium. L(+)-Isomer increased with the dosage,no(-)-lactic acid was observed when the concentration of supplemented L(+)-lactic acid in matrix was≥1.5g l-1. However,the L(+)-lactic acid yield decreased with the dosage. Under suitable conditions,100g l-1 initial corncob xylose,2g l-1 NH4NO3,1.5 g l-1 supplemented L(+)-lactic acid,R. oryzae HZS6 could produce 100% L(+)-form lactic acid with the yield of 75% and final concentration of 81.2 g l-1,at pH 6.0 and temperature 34℃.