Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular...As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.展开更多
Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent ad...Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.展开更多
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(22325304,22221003 and 22033007)We acknowledge the Supercomputing Center of USTC,Hefei Advanced Computing Center,Beijing PARATERA Tech Co.,Ltd.,for providing high-performance computing services。
文摘As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.
基金Project(2023YFB2603602)supported by the National Key Research and Development Program of ChinaProjects(52222810,52178383)supported by the National Natural Science Foundation of China。
文摘Rockburst has perennially posed a formidable challenge to the stability of underground engineering works,particularly under conditions of deep-seated high stress.This paper provides a comprehensive review of recent advancements in on-site research related to rockburst occurrences,covering on-site case analyses,monitoring methodologies,early warning systems,and risk(proneness)evaluation.Initially,the concepts and classifications of rockburst based on on-site understanding were summarized.The influences of structural planes(in various spatial distribution combinations),in-situ stress(particularly magnitude and direction of the principal stress),dynamic disturbances,and excavation profiles on rockburst were thoroughly assessed and discussed through the analysis of published rockburst cases and on-site survey results.Subsequently,a compendium of commonly employed on-site monitoring techniques was outlined,delineating their respective technical attributes.Particular emphasis is accorded to the efficacy of microseismic monitoring technology and its prospective utility in facilitating dynamic rockburst early warning mechanisms.Building upon this foundation,the feasibility of assessing rockburst propensity while considering on-site variables is verified,encompassing the selection and quantitative evaluation of pertinent indicators.Ultimately,a comprehensive synthesis of the paper is presented,alongside the articulation of prospective research goals for the future.
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.