Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)...Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.展开更多
Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) s...Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) segregation in 2.25Cr-1Mo steelused for a hot-wall hydrofining reactor, and the kinetics of grain boundary segrea-tion of impurity P in the steel exposed to the process environment of the hydrofiningreactor was calculated on the basis of the model. The Auger electron spectroscopytest was performed in order to determine the grain boundary concentration of P. Theexperimental result is agreement with the theoretical calculated data. The results showthat the kinetics equation is reasonable for predicting the levels of grain boundarysegregation of impurity P in 2.25Cr-1Mo steel used for hot-wall hydrofining reactors.展开更多
Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue b...Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement.展开更多
Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction mo...Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.展开更多
Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilizat...Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.展开更多
The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuou...The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There a...The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There are toughness troughs of tempered martensite embrittlement(TME) at 350 ℃ and 400 ℃ for steel SiMnCr and SiMnMo respectively. RE raises the toughness of TME troughs to some extent by refining grains and restraining embrittlment of austenite grain boundary, although it does not change TME temperature.展开更多
Considering the intrinsic and environmental embrittlement(IE and EE).the room temperature embrittlement of Fe_3Al and FeAl is analysed by means of empirical electron theory of solids and molecules.It is found that bot...Considering the intrinsic and environmental embrittlement(IE and EE).the room temperature embrittlement of Fe_3Al and FeAl is analysed by means of empirical electron theory of solids and molecules.It is found that both IE and EE exist in Fe_3Al and FeAl.The IE is determined by the characteristic of bond structure and electron distribution;and the EE results from the remarkable decrease of local metallicity and the formation of severe anisotropy bonds when the interstitial sites have been occupied by solute hydrogen.On the basis of analysis results,the effective methods are proposed to improve the ductilities in Fe_3Al and FeAl.展开更多
Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperatu...Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperature determined by the small punch test is much lower than that determined by the standard Charpy test. There is some irradiation-induced embrittlement effect after the steel is irradiated for 46 days with a neutron dose rate of 1.05×10^18dpa/s (displacement per atom per second).展开更多
A comprehensive review of low temperature environmental embrittlement in intermetallics is pres- ented. Moisture and hydrogen are shown to severely embrittle many intermetallics, including iron, nickel and titanium al...A comprehensive review of low temperature environmental embrittlement in intermetallics is pres- ented. Moisture and hydrogen are shown to severely embrittle many intermetallics, including iron, nickel and titanium aluminides. The roles of composition, microstructure and external test variables are emphasized. Several methods to reduce or avoid embrittlement are described.展开更多
The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test enviro...The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test environments. It has been shown that the ductility in various environments decreases in sequence of oxygen—oil—air—distilled water. The results of X ray diffraction analysis show that (211) preferred orientation of B 2 phase appears in cold rolled Fe 3(Al,Cr,Zr) alloy after recrystallization annealing.展开更多
Due to the rapid development of China' s rail transportation equipment manufacturing industry and related international distribution, important material suppliers such as Baoshan Iron & Steel Co., Ltd. carries on in...Due to the rapid development of China' s rail transportation equipment manufacturing industry and related international distribution, important material suppliers such as Baoshan Iron & Steel Co., Ltd. carries on investigating the stability of material under extremely cold conditions. In this study, mechanical properties and secondary work embrittlement of weathering steel 05CuPCrNi were tested at low temperature. Compared to the mechanical properties at room temperature, the yield and tensile strength increase slightly with decreasing temperature. However, the variation of elongation is not obvious. The experimental results also show that the secondary work embrittlement transition temperature of 05CuPCrNi is lower than - 60 ℃. These results provide the basis for the use of this train body material in extremely cold regions.展开更多
The environmental embrittlement of intermetallics Co3Ti, Ni3Al, Fe3Al and TiAl has been investigated by measuring the tensile properties in oxygen and hydrogen at 2×l0-4/s strain rate. The results show that the ...The environmental embrittlement of intermetallics Co3Ti, Ni3Al, Fe3Al and TiAl has been investigated by measuring the tensile properties in oxygen and hydrogen at 2×l0-4/s strain rate. The results show that the hydrogen embrittlement factor in gaseous hydrogen (IH2 ) defined as[(δO2 -δH2 ) / δH2, ] ×l00% of above mentioned four intermetallics is decreased in the sequence of Co3Ti> Ni3Al> Fe3Al> TiAl. This phenomena can be explained by the different catalytic reaction on the surface of matrix metals (such as Ni, Co, Fe, Ti) with decomposition of H2 into atommic hydrogen, leading to hydrogen embrittlement.展开更多
This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fractur...This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time;this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was<8 d.However,unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d.Moreover,nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions.This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected.Furthermore,the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids.Our results provide valuable information on the mechanical degradation of steel in an H2S environment,regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.展开更多
The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B...The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B in Co 3Ti and Zr in Ni 3Al do not reduce the hydrogen diffusivity along the grain boundaries, therefore can not suppress the moisture induced environmental embrittlement. The above mentioned behavior of Zr in Ni 3Al and B in Co 3Ti is attributed to the fact that Zr and B are not segregated on the grain boundaries.展开更多
The effects of addition of chromium or boron on room temperature tensile properties,fracture behavior and susceptibility to test environments (air vs. vacuuwi of forged Fe3Al have been investigated. The results indica...The effects of addition of chromium or boron on room temperature tensile properties,fracture behavior and susceptibility to test environments (air vs. vacuuwi of forged Fe3Al have been investigated. The results indicated that both chromium and boron result in increasing room temperuture ductility and fracture strength of the Fe3Al alloy whether tested in air or in vacuum. The susceptibility to test envimnment was described with the embrittlement index I: I=(δv-δA)/δv. The embrittlement indexes, for Fe-30Al, Fe-30Al-4Cr and Fe-30Al-0. 13B (at. %), are 24%, 37% and 29%,respectively. Scanning electron microscope examination of fracture surface revealed that the fracture mode of the three alloys remains unchanged, and all of them exhibited a transgranular cleavage fracture mode when tested in vacuum or air.展开更多
By studying a cluster model containing Ni region (phase), NiaAI region (phase) and Ni/Ni3Al region (interface) with a first-principles method, the occupation behavior and the ductility effect of zirconium in a N...By studying a cluster model containing Ni region (phase), NiaAI region (phase) and Ni/Ni3Al region (interface) with a first-principles method, the occupation behavior and the ductility effect of zirconium in a Ni-Ni3Al system were investigated. It is found that zirconium has a stronger segregation tendency to Ni region than to Ni3Al region. The bond order analyses based on Rice-Wang model and the maximum theoretical shear stress model, however, show that zirconium has different degrees of ductility effect in these three regions, which originates from its different ability to increase the Griffith work of interracial cleavage 2γint and to decrease the maximum theoretical shear stress τmax. In addition, it is revealed in this paper that the distinct behavior of zirconium from boron to restrain hydrogen-induced embrittlement can be attributed to their different influences on the crystalline and electronic structures in Ni-Ni3Al alloys.展开更多
An electronic approach to the mechanism of hydrogen embrittlement in metals is pre-sented and discussed. Some problems of the mechanism of hydrogen embrittlement are pointed out from an electronic point of view. Elect...An electronic approach to the mechanism of hydrogen embrittlement in metals is pre-sented and discussed. Some problems of the mechanism of hydrogen embrittlement are pointed out from an electronic point of view. Electronic structure calculations in a periodically cleaved or slipped lattice are developed in orker to identofy deformation-sensitive electronic states in the absence of hydrogen. The calculational results are given and discussed for a trunsition metal, Pd. Electronic structure calculations in the presence of hydrogen are outlined and hydrogen embrittlement in transition metals is discussed in terms of electronic states.展开更多
基金supported by the Project of Scientific and Technical Supporting Program of China during the 11th Five-Year Plan(No.2006BAE03A06)
文摘Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.
文摘Based on the theory of grain boundary segregation, a kinetics model of temper em-brittlement caused by long-term service for hot-wall hydrofining reactors was studied.The kinetics model was applied to phosphorus (P) segregation in 2.25Cr-1Mo steelused for a hot-wall hydrofining reactor, and the kinetics of grain boundary segrea-tion of impurity P in the steel exposed to the process environment of the hydrofiningreactor was calculated on the basis of the model. The Auger electron spectroscopytest was performed in order to determine the grain boundary concentration of P. Theexperimental result is agreement with the theoretical calculated data. The results showthat the kinetics equation is reasonable for predicting the levels of grain boundarysegregation of impurity P in 2.25Cr-1Mo steel used for hot-wall hydrofining reactors.
文摘Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement.
基金supported by the National Key R&D Program of China (No. 2019YFB1900901)the Fundamental Research Funds for the Central Universities (No. 2021MS032)
文摘Predicting the transition-temperature shift(TTS)induced by neutron irradiation in reactor pressure-vessel(RPV)steels is important for the evaluation and extension of nuclear power-plant lifetimes.Current prediction models may fail to properly describe the embrittlement trend curves of Chinese domestic RPV steels with relatively low Cu content.Based on the screened surveillance data of Chinese domestic and similar international RPV steels,we have developed a new fluencedependent model for predicting the irradiation-embrittlement trend.The fast neutron fluence(E>1 MeV)exhibited the highest correlation coefficient with the measured TTS data;thus,it is a crucial parameter in the prediction model.The chemical composition has little relevance to the TTS residual calculated by the fluence-dependent model.The results show that the newly developed model with a simple power-law functional form of the neutron fluence is suitable for predicting the irradiation-embrittlement trend of Chinese domestic RPVs,regardless of the effect of the chemical composition.
基金the National Key Research and Development Program of China(No.2022YFB3709000)the National Natural Science Foundation of China(Nos.52201060 and 51922002)+2 种基金the China Postdoctoral Science Foundation(Nos.BX20220035 and 2022M710347)Science Center for Gas Turbine Project(No.P2022-B-IV-008-001)the Open Fund of State Key Laboratory of New Metal Materials,University of Science and Technology Beijing(No.2022Z-18)。
文摘Given the carbon peak and carbon neutrality era,there is an urgent need to develop high-strength steel with remarkable hydrogen embrittlement resistance.This is crucial in enhancing toughness and ensuring the utilization of hydrogen in emerging iron and steel materials.Simultaneously,the pursuit of enhanced metallic materials presents a cross-disciplinary scientific and engineering challenge.Developing high-strength,toughened steel with both enhanced strength and hydrogen embrittlement(HE)resistance holds significant theoretical and practical implications.This ensures secure hydrogen utilization and further carbon neutrality objectives within the iron and steel sector.Based on the design principles of high-strength steel HE resistance,this review provides a comprehensive overview of research on designing surface HE resistance and employing nanosized precipitates as intragranular hydrogen traps.It also proposes feasible recommendations and prospects for designing high-strength steel with enhanced HE resistance.
文摘The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
文摘The mechanical properties of SiMnCr and SiMnMo steels tempered in lowtemperature range were studied. The results show that there is no notable effect of RE on material strength during lowtemperature tempering. There are toughness troughs of tempered martensite embrittlement(TME) at 350 ℃ and 400 ℃ for steel SiMnCr and SiMnMo respectively. RE raises the toughness of TME troughs to some extent by refining grains and restraining embrittlment of austenite grain boundary, although it does not change TME temperature.
文摘Considering the intrinsic and environmental embrittlement(IE and EE).the room temperature embrittlement of Fe_3Al and FeAl is analysed by means of empirical electron theory of solids and molecules.It is found that both IE and EE exist in Fe_3Al and FeAl.The IE is determined by the characteristic of bond structure and electron distribution;and the EE results from the remarkable decrease of local metallicity and the formation of severe anisotropy bonds when the interstitial sites have been occupied by solute hydrogen.On the basis of analysis results,the effective methods are proposed to improve the ductilities in Fe_3Al and FeAl.
文摘Embrittlement of a Cr-Mo2.25CrlMo steel stemming from neutron irradiation at 270℃ is studied by virtue of small punch testing in conjunction with scanning electron microscopy. The ductile-brittle transition temperature determined by the small punch test is much lower than that determined by the standard Charpy test. There is some irradiation-induced embrittlement effect after the steel is irradiated for 46 days with a neutron dose rate of 1.05×10^18dpa/s (displacement per atom per second).
文摘A comprehensive review of low temperature environmental embrittlement in intermetallics is pres- ented. Moisture and hydrogen are shown to severely embrittle many intermetallics, including iron, nickel and titanium aluminides. The roles of composition, microstructure and external test variables are emphasized. Several methods to reduce or avoid embrittlement are described.
文摘The room temperature tensile properties of cold rolled and annealed Fe 3(Al,Cr,Zr) alloy are similar to those of warm rolled Fe 3Al alloys. The cold rolled Fe 3(Al,Cr,Zr) alloy is also susceptible to test environments. It has been shown that the ductility in various environments decreases in sequence of oxygen—oil—air—distilled water. The results of X ray diffraction analysis show that (211) preferred orientation of B 2 phase appears in cold rolled Fe 3(Al,Cr,Zr) alloy after recrystallization annealing.
文摘Due to the rapid development of China' s rail transportation equipment manufacturing industry and related international distribution, important material suppliers such as Baoshan Iron & Steel Co., Ltd. carries on investigating the stability of material under extremely cold conditions. In this study, mechanical properties and secondary work embrittlement of weathering steel 05CuPCrNi were tested at low temperature. Compared to the mechanical properties at room temperature, the yield and tensile strength increase slightly with decreasing temperature. However, the variation of elongation is not obvious. The experimental results also show that the secondary work embrittlement transition temperature of 05CuPCrNi is lower than - 60 ℃. These results provide the basis for the use of this train body material in extremely cold regions.
文摘The environmental embrittlement of intermetallics Co3Ti, Ni3Al, Fe3Al and TiAl has been investigated by measuring the tensile properties in oxygen and hydrogen at 2×l0-4/s strain rate. The results show that the hydrogen embrittlement factor in gaseous hydrogen (IH2 ) defined as[(δO2 -δH2 ) / δH2, ] ×l00% of above mentioned four intermetallics is decreased in the sequence of Co3Ti> Ni3Al> Fe3Al> TiAl. This phenomena can be explained by the different catalytic reaction on the surface of matrix metals (such as Ni, Co, Fe, Ti) with decomposition of H2 into atommic hydrogen, leading to hydrogen embrittlement.
基金financially supported by the National Natural Science Foundation of China (Nos. 51805292, 51671215, and 51425502)the National Postdoctoral Program for Innovative Talents of China (No. BX201700132)
文摘This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment.The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time;this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was<8 d.However,unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d.Moreover,nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions.This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected.Furthermore,the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids.Our results provide valuable information on the mechanical degradation of steel in an H2S environment,regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.
文摘The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B in Co 3Ti and Zr in Ni 3Al do not reduce the hydrogen diffusivity along the grain boundaries, therefore can not suppress the moisture induced environmental embrittlement. The above mentioned behavior of Zr in Ni 3Al and B in Co 3Ti is attributed to the fact that Zr and B are not segregated on the grain boundaries.
文摘The effects of addition of chromium or boron on room temperature tensile properties,fracture behavior and susceptibility to test environments (air vs. vacuuwi of forged Fe3Al have been investigated. The results indicated that both chromium and boron result in increasing room temperuture ductility and fracture strength of the Fe3Al alloy whether tested in air or in vacuum. The susceptibility to test envimnment was described with the embrittlement index I: I=(δv-δA)/δv. The embrittlement indexes, for Fe-30Al, Fe-30Al-4Cr and Fe-30Al-0. 13B (at. %), are 24%, 37% and 29%,respectively. Scanning electron microscope examination of fracture surface revealed that the fracture mode of the three alloys remains unchanged, and all of them exhibited a transgranular cleavage fracture mode when tested in vacuum or air.
基金support from the National Natural Science Foundation of China under the grant No.50771095.
文摘By studying a cluster model containing Ni region (phase), NiaAI region (phase) and Ni/Ni3Al region (interface) with a first-principles method, the occupation behavior and the ductility effect of zirconium in a Ni-Ni3Al system were investigated. It is found that zirconium has a stronger segregation tendency to Ni region than to Ni3Al region. The bond order analyses based on Rice-Wang model and the maximum theoretical shear stress model, however, show that zirconium has different degrees of ductility effect in these three regions, which originates from its different ability to increase the Griffith work of interracial cleavage 2γint and to decrease the maximum theoretical shear stress τmax. In addition, it is revealed in this paper that the distinct behavior of zirconium from boron to restrain hydrogen-induced embrittlement can be attributed to their different influences on the crystalline and electronic structures in Ni-Ni3Al alloys.
文摘An electronic approach to the mechanism of hydrogen embrittlement in metals is pre-sented and discussed. Some problems of the mechanism of hydrogen embrittlement are pointed out from an electronic point of view. Electronic structure calculations in a periodically cleaved or slipped lattice are developed in orker to identofy deformation-sensitive electronic states in the absence of hydrogen. The calculational results are given and discussed for a trunsition metal, Pd. Electronic structure calculations in the presence of hydrogen are outlined and hydrogen embrittlement in transition metals is discussed in terms of electronic states.