AIM: To assess surgical outcomes of a novel method of transscleral drainage of subretinal fluid using a 25-gauge trocar-cannula with a self-closing valve(DTV) in patients with severe exudative retinal detachment(ERD) ...AIM: To assess surgical outcomes of a novel method of transscleral drainage of subretinal fluid using a 25-gauge trocar-cannula with a self-closing valve(DTV) in patients with severe exudative retinal detachment(ERD) in Coats disease.METHODS: Retrospective consecutive cases of 20 patients(20 eyes) of severe ERD due to Coats disease(stage 3 B) in total 156 Coats patients between June 2015 and April 2019 were included in this study. The participants were aged 1 to 10 y with a mean age of 3.50±1.79 y. The mean follow-up time were 11.9 mo. Subretinal fluid was drained transsclerally using a novel method of DTV. The height of the retinal detachment and the regression of abnormal vessels including telangiectasias and aneurysms were observed. Complications including vitreoretinal fibrosis, tractional retinal detachments(TRD), endophthalmitis, retinal holes, and hemorrhages were evaluated.RESULTS: Following surgeries, the patients showed the replacement of ERD and regression of telangiectatic retinal vessels observed with binocular indirect ophthalmoscopy. Six patients received retinal cryotherapies and 12 patients received laser photocoagulations following first external subretinal fluid drainage using DTV. All patients underwent intravitreal anti-vascular endothelial growth factor therapies to induce residual subretinal fluid absorption. During followups, 8 patients underwent a second drainage operation, 17 patients received retinal laser photocoagulations and 7 patients received cryotherapies. Vitreoretinal fibrosis was found in 7 patients and 6 patients underwent microinvasive vitrectomies during the follow-up period. Severe TRD, iatrogenic retinal holes, and hemorrhages were not found.CONCLUSION: The authors present a new therapeutic approach that successfully drains subretinal fluid in advanced stage 3 B Coats disease with severe ERD. This is a simple, safe and less invasive approach when compared with traditional managements. However, it should be strictly selected for patients with high bullous ERD close to the central axis of the eye in order to avoid the complication of retinal holes.展开更多
AIM:To provide a detailed description of the natural history of persistent subretinal fluid(SRF)after successful repair of rhegmatogenous retinal detachment(RRD)and its association with visual outcome.METHODS:This was...AIM:To provide a detailed description of the natural history of persistent subretinal fluid(SRF)after successful repair of rhegmatogenous retinal detachment(RRD)and its association with visual outcome.METHODS:This was a prospective long-term follow-up for eyes undergoing scleral buckling(SB)surgery for maculaoff RRD.Examinations were carried out preoperatively and postoperatively at 1,3,6,9 and 12 mo,until persistent SRF had completely resolved.One month postoperatively,optical coherence tomography(OCT)was used to classify SRF into three patterns:bleb-like loculated(BL),shallow-diffused(SD),and multiple blebs(MB).Serial OCT imaging was used to evaluate morphological changes in SRF until its complete disappearance.Patients were divided into two groups depending on the presence or absence of persistent SRF.RESULTS:A total of 59 patients(59 eyes)were included.There were no statistical differences between two groups at baseline,except for the proportion of patients with high myopia and a younger age.One month after surgery,OCT detected persistent SRF in 49 eyes(83.1%).The 3 morphological patterns of SRF were observed in 27 eyes(55.1%)with BL,13 eyes(26.5%)with SD,and 9 eyes(18.4%)with MB.The mean time for complete absorption differed significantly across the three SRF patterns(F=8.097,P=0.001),which was 8.8±6.1,20.1±12.1,and 16.7±10.2 mo in BL,SD,and MB,respectively.In 9 of the 13 eyes with SD,the pattern transformed into MB type.In cases involving MB,the size and number of blebs decreased gradually until they had been completely absorbed.Eyes with persistent SRF were more likely to demonstrate disruption of the ellipsoid zone(49.0%vs 10%,P=0.034).The final best-corrected visual acuity of two groups was 0.37±0.11(with SRF)vs 0.34±0.12(without SRF)logMAR(P=0.499),respectively.CONCLUSION:High preoperative myopia and younger age are associated with persistent SRF.BL is the most commonly observed pattern with the shortest duration and gradually disappeared.Most cases involving SD SRF transform into MB type during resolution.The size and number of the MBs decrease gradually until they were completely absorbed.The absence of persistent SRF may contribute to slow visual recovery in the short-term but does not influence the final visual outcome.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Purpose:To determine the effects of traditional Chinese medicines on subretinal fluld absorption after Operation for retinal detachment.Mehods:Among100eyes with operations fo retinal detachment without drainage of flu...Purpose:To determine the effects of traditional Chinese medicines on subretinal fluld absorption after Operation for retinal detachment.Mehods:Among100eyes with operations fo retinal detachment without drainage of fluid,there were 50eyes in traditional Chinese medicine treatment group and 50eyes in the control group.and there were no significant difference between the two groups in age,myopia and retinal detachment area.We observed the time for the absorption of subretinal fluid and visual acuity improvement aftr the opera-tions for retinal detachment.Results;he result showed that the average time for the absorption of subretinal fluid was14.5days in the traditional Chinese medicine treatment group,21.7days in the control group and the visual acuity was better in the former than in the latter.Conclusions:The taditional Chinese medicine treatment could increase the ab-sorption of subretional fluid,the mechanisms of which may be that Chinese medicines regulated and impved the general blood circulation and local eye blood criculation and the function of blood-retinal barrier so that they increase the out-ward osmotic suction forces of the pigment epithelium.展开更多
The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that o...The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing.展开更多
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio...With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.展开更多
Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death.Early diagnosis and precision medicine can significantly improve the survival...Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death.Early diagnosis and precision medicine can significantly improve the survival rate and prognosis of lung cancer patients.At present,the clinical diagnosis of lung cancer is challenging due to a lack of effective non-invasive detection methods and biomarkers,and treatment is primarily hindered by drug resistance and high tumor heterogeneity.Liquid biopsy is a method for detecting circulating biomarkers in the blood and other body fluids containing genetic information from primary tumor tissues.Bronchoalveolar lavage fluid(BALF)is a potential liquid biopsy medium that is rich in a variety of bioactive substances and cell components.BALF contains information on the key characteristics of tumors,including the tumor subtype,gene mutation type,and tumor environment,thus BALF may be used as a diagnostic supplement to lung biopsy.In this review,the current research on BALF in the diagnosis,treatment,and prognosis of lung cancer is summarized.The advantages and disadvantages of different components of BALF,including cells,cell-free DNA,extracellular vesicles,and micro RNA are introduced.In particular,the great potential of extracellular vesicles in precision diagnosis and detection of drug-resistant for lung cancer is highlighted.In addition,the performance of liquid biopsies with different body fluid sources in lung cancer detection are compared to facilitate more selective studies involving BALF,thereby promoting the application of BALF for precision medicine in lung cancer patients in the future.展开更多
This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in Februa...This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of...Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
BACKGROUND Non-surgical methods such as percutaneous drainage are crucial for the treatment of patients with severe acute pancreatitis(SAP).However,there is still an ongoing debate regarding the optimal timing for abd...BACKGROUND Non-surgical methods such as percutaneous drainage are crucial for the treatment of patients with severe acute pancreatitis(SAP).However,there is still an ongoing debate regarding the optimal timing for abdominal paracentesis catheter place-ment and drainage.AIM To explore the influence of different timing for abdominal paracentesis catheter placement and drainage in SAP complicated by intra-abdominal fluid accumu-lation.METHODS Using a retrospective approach,184 cases of SAP complicated by intra-abdominal fluid accumulation were enrolled and categorized into three groups based on the timing of catheter placement:group A(catheter placement within 2 d of symptom onset,n=89),group B(catheter placement between days 3 and 5 after symptom onset,n=55),and group C(catheter placement between days 6 and 7 after symptom onset,n=40).The differences in progression rate,mortality rate,and the number of cases with organ dysfunction were compared among the three groups.RESULTS The progression rate of group A was significantly lower than those in groups B and groups C(2.25%vs 21.82%and 32.50%,P<0.05).Further,the proportion of patients with at least one organ dysfunction in group A was significantly lower than those in groups B and groups C(41.57%vs 70.91%and 75.00%,P<0.05).The mortality rates in group A,group B,and group C were similar(P>0.05).At postoperative day 3,the levels of C-reactive protein(55.41±19.32 mg/L vs 82.25±20.41 mg/L and 88.65±19.14 mg/L,P<0.05),procalcitonin(1.36±0.51 ng/mL vs 3.20±0.97 ng/mL and 3.41±0.98 ng/mL,P<0.05),tumor necrosis factor-alpha(15.12±6.63 pg/L vs 22.26±9.96 pg/L and 23.39±9.12 pg/L,P<0.05),interleukin-6(332.14±90.16 ng/L vs 412.20±88.50 ng/L and 420.08±87.65ng/L,P<0.05),interleukin-8(415.54±68.43 ng/L vs 505.80±66.90 ng/L and 510.43±68.23ng/L,P<0.05)and serum amyloid A(270.06±78.49 mg/L vs 344.41±81.96 mg/L and 350.60±80.42 mg/L,P<0.05)were significantly lower in group A compared to those in groups B and group C.The length of hospital stay in group A was significantly lower than those in groups B and group C(24.50±4.16 d vs 35.54±6.62 d and 38.89±7.10 d,P<0.05).The hospitalization expenses in group A were also significantly lower than those in groups B and groups C[2.70(1.20,3.55)ten-thousand-yuan vs 5.50(2.98,7.12)ten-thousand-yuan and 6.00(3.10,8.05)ten-thousand-yuan,P<0.05).The incidence of complications in group A was markedly lower than that in group C(5.62%vs 25.00%,P<0.05),and similar to group B(P>0.05).CONCLUSION Percutaneous catheter drainage for the treatment of SAP complicated by intra-abdominal fluid accumulation is most effective when performed within 2 d of onset.展开更多
The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,...The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.展开更多
Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fractur...Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process.展开更多
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ...Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.展开更多
In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and...In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).展开更多
In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a ...In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a powerful framework for the analysis of complex fluid flow phenomena and address the uncertainties inherent in fluid dynamics systems.Following this trend,the current investigation portrays the design and construction of an important technique named swarming optimized neuroheuristic intelligence with the competency of artificial neural networks to analyze nonlinear viscoelastic magneto-hydrodynamic Prandtl-Eyring fluid flow model,with diffusive magnetic layers effect along an extended sheet.The currently designed computational technique is established using inverse multiquadric radial basis activation function through the hybridization of a well-known global searching technique of particle swarm optimization and sequential quadratic programming,a technique capable of rapid convergence locally.The most appropriate scaling group involved transformations that are implemented on governing equations of the suggested fluidic model to convert it from a system of nonlinear partial differential equations into a dimensionless form of a third-order nonlinear ordinary differential equation.The transformed/reduced fluid flow model is solved for sundry variations of physical quantities using the designed scheme and outcomes are matched consistently with Adam's numerical technique with negligible magnitude of absolute errors and mean square errors.Moreover,it is revealed that the velocity of the fluid depreciates in the presence of a strong magnetic field effect.The efficacy of the designed solver is depicted evidently through rigorous statistical observations via exhaustive numerical experimentation of the fluidic problem.展开更多
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte...The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).展开更多
基金Supported by Beijing Tongren Hospital,Capital Medical University(No.TRZDYXZY201703)
文摘AIM: To assess surgical outcomes of a novel method of transscleral drainage of subretinal fluid using a 25-gauge trocar-cannula with a self-closing valve(DTV) in patients with severe exudative retinal detachment(ERD) in Coats disease.METHODS: Retrospective consecutive cases of 20 patients(20 eyes) of severe ERD due to Coats disease(stage 3 B) in total 156 Coats patients between June 2015 and April 2019 were included in this study. The participants were aged 1 to 10 y with a mean age of 3.50±1.79 y. The mean follow-up time were 11.9 mo. Subretinal fluid was drained transsclerally using a novel method of DTV. The height of the retinal detachment and the regression of abnormal vessels including telangiectasias and aneurysms were observed. Complications including vitreoretinal fibrosis, tractional retinal detachments(TRD), endophthalmitis, retinal holes, and hemorrhages were evaluated.RESULTS: Following surgeries, the patients showed the replacement of ERD and regression of telangiectatic retinal vessels observed with binocular indirect ophthalmoscopy. Six patients received retinal cryotherapies and 12 patients received laser photocoagulations following first external subretinal fluid drainage using DTV. All patients underwent intravitreal anti-vascular endothelial growth factor therapies to induce residual subretinal fluid absorption. During followups, 8 patients underwent a second drainage operation, 17 patients received retinal laser photocoagulations and 7 patients received cryotherapies. Vitreoretinal fibrosis was found in 7 patients and 6 patients underwent microinvasive vitrectomies during the follow-up period. Severe TRD, iatrogenic retinal holes, and hemorrhages were not found.CONCLUSION: The authors present a new therapeutic approach that successfully drains subretinal fluid in advanced stage 3 B Coats disease with severe ERD. This is a simple, safe and less invasive approach when compared with traditional managements. However, it should be strictly selected for patients with high bullous ERD close to the central axis of the eye in order to avoid the complication of retinal holes.
文摘AIM:To provide a detailed description of the natural history of persistent subretinal fluid(SRF)after successful repair of rhegmatogenous retinal detachment(RRD)and its association with visual outcome.METHODS:This was a prospective long-term follow-up for eyes undergoing scleral buckling(SB)surgery for maculaoff RRD.Examinations were carried out preoperatively and postoperatively at 1,3,6,9 and 12 mo,until persistent SRF had completely resolved.One month postoperatively,optical coherence tomography(OCT)was used to classify SRF into three patterns:bleb-like loculated(BL),shallow-diffused(SD),and multiple blebs(MB).Serial OCT imaging was used to evaluate morphological changes in SRF until its complete disappearance.Patients were divided into two groups depending on the presence or absence of persistent SRF.RESULTS:A total of 59 patients(59 eyes)were included.There were no statistical differences between two groups at baseline,except for the proportion of patients with high myopia and a younger age.One month after surgery,OCT detected persistent SRF in 49 eyes(83.1%).The 3 morphological patterns of SRF were observed in 27 eyes(55.1%)with BL,13 eyes(26.5%)with SD,and 9 eyes(18.4%)with MB.The mean time for complete absorption differed significantly across the three SRF patterns(F=8.097,P=0.001),which was 8.8±6.1,20.1±12.1,and 16.7±10.2 mo in BL,SD,and MB,respectively.In 9 of the 13 eyes with SD,the pattern transformed into MB type.In cases involving MB,the size and number of blebs decreased gradually until they had been completely absorbed.Eyes with persistent SRF were more likely to demonstrate disruption of the ellipsoid zone(49.0%vs 10%,P=0.034).The final best-corrected visual acuity of two groups was 0.37±0.11(with SRF)vs 0.34±0.12(without SRF)logMAR(P=0.499),respectively.CONCLUSION:High preoperative myopia and younger age are associated with persistent SRF.BL is the most commonly observed pattern with the shortest duration and gradually disappeared.Most cases involving SD SRF transform into MB type during resolution.The size and number of the MBs decrease gradually until they were completely absorbed.The absence of persistent SRF may contribute to slow visual recovery in the short-term but does not influence the final visual outcome.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
文摘Purpose:To determine the effects of traditional Chinese medicines on subretinal fluld absorption after Operation for retinal detachment.Mehods:Among100eyes with operations fo retinal detachment without drainage of fluid,there were 50eyes in traditional Chinese medicine treatment group and 50eyes in the control group.and there were no significant difference between the two groups in age,myopia and retinal detachment area.We observed the time for the absorption of subretinal fluid and visual acuity improvement aftr the opera-tions for retinal detachment.Results;he result showed that the average time for the absorption of subretinal fluid was14.5days in the traditional Chinese medicine treatment group,21.7days in the control group and the visual acuity was better in the former than in the latter.Conclusions:The taditional Chinese medicine treatment could increase the ab-sorption of subretional fluid,the mechanisms of which may be that Chinese medicines regulated and impved the general blood circulation and local eye blood criculation and the function of blood-retinal barrier so that they increase the out-ward osmotic suction forces of the pigment epithelium.
基金supported by the National Natural Science Foundation of China(Grant No.52022087).
文摘The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing.
文摘With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82173182)the Sichuan Science and Technology Program(Grant No.2021YJ0117 to Weiya Wang+1 种基金Grant No.2023NSFSC1939 to Dan Liu)the 1·3·5 project for Disciplines of Excellence–Clinical Research Incubation Project,West China Hospital,Sichuan University(Grant Nos.2019HXFH034 and ZYJC21074)。
文摘Lung cancer is the most common and fatal malignant disease worldwide and has the highest mortality rate among tumor-related causes of death.Early diagnosis and precision medicine can significantly improve the survival rate and prognosis of lung cancer patients.At present,the clinical diagnosis of lung cancer is challenging due to a lack of effective non-invasive detection methods and biomarkers,and treatment is primarily hindered by drug resistance and high tumor heterogeneity.Liquid biopsy is a method for detecting circulating biomarkers in the blood and other body fluids containing genetic information from primary tumor tissues.Bronchoalveolar lavage fluid(BALF)is a potential liquid biopsy medium that is rich in a variety of bioactive substances and cell components.BALF contains information on the key characteristics of tumors,including the tumor subtype,gene mutation type,and tumor environment,thus BALF may be used as a diagnostic supplement to lung biopsy.In this review,the current research on BALF in the diagnosis,treatment,and prognosis of lung cancer is summarized.The advantages and disadvantages of different components of BALF,including cells,cell-free DNA,extracellular vesicles,and micro RNA are introduced.In particular,the great potential of extracellular vesicles in precision diagnosis and detection of drug-resistant for lung cancer is highlighted.In addition,the performance of liquid biopsies with different body fluid sources in lung cancer detection are compared to facilitate more selective studies involving BALF,thereby promoting the application of BALF for precision medicine in lung cancer patients in the future.
基金jointly funded by the National Key Research and Development Project(2018YFC1503301)the National Natural Sciences Foundation of China(NSFC)(U1839211)the fundamental scientific research project of the Institute of Geology,China Earthquake Administration(IGCEA2123)。
文摘This study analyzed and summarized in detail the spatial and temporal distributions of earthquakes,tidal responses,focal mechanisms,and stress field characteristics for the M 7.3 Haicheng earthquake sequence in February 1975.The foreshocks are related to the main fault and the conjugate faults surrounding the extension step-over in the middle.The initiation timing of the foreshock clusters and the original time of the mainshock were clearly modulated by the Earth's tidal force and coincided with the peak of dilational volumetric tidal strain.As a plausible and testable hypothesis,we proposed a fluid-driven foreshock model,by which all observed seismicity features can be more reasonably interpreted with respect to the results of existing models.Together with some other known examples,the widely existing step-over along strike-slip faults and associated conjugate faults,especially for extensional ones in the presence of deep fluids,favor the occurrence of short-term foreshocks.Although clustered seismicity with characteristics similar to those of the studied case is not a sufficient and necessary condition for large earthquakes to occur under similar tectonic conditions,it undoubtedly has a warning significance for the criticality of the main fault.Subsequent testing would require quantification of true/false positives/negatives.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
文摘Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘BACKGROUND Non-surgical methods such as percutaneous drainage are crucial for the treatment of patients with severe acute pancreatitis(SAP).However,there is still an ongoing debate regarding the optimal timing for abdominal paracentesis catheter place-ment and drainage.AIM To explore the influence of different timing for abdominal paracentesis catheter placement and drainage in SAP complicated by intra-abdominal fluid accumu-lation.METHODS Using a retrospective approach,184 cases of SAP complicated by intra-abdominal fluid accumulation were enrolled and categorized into three groups based on the timing of catheter placement:group A(catheter placement within 2 d of symptom onset,n=89),group B(catheter placement between days 3 and 5 after symptom onset,n=55),and group C(catheter placement between days 6 and 7 after symptom onset,n=40).The differences in progression rate,mortality rate,and the number of cases with organ dysfunction were compared among the three groups.RESULTS The progression rate of group A was significantly lower than those in groups B and groups C(2.25%vs 21.82%and 32.50%,P<0.05).Further,the proportion of patients with at least one organ dysfunction in group A was significantly lower than those in groups B and groups C(41.57%vs 70.91%and 75.00%,P<0.05).The mortality rates in group A,group B,and group C were similar(P>0.05).At postoperative day 3,the levels of C-reactive protein(55.41±19.32 mg/L vs 82.25±20.41 mg/L and 88.65±19.14 mg/L,P<0.05),procalcitonin(1.36±0.51 ng/mL vs 3.20±0.97 ng/mL and 3.41±0.98 ng/mL,P<0.05),tumor necrosis factor-alpha(15.12±6.63 pg/L vs 22.26±9.96 pg/L and 23.39±9.12 pg/L,P<0.05),interleukin-6(332.14±90.16 ng/L vs 412.20±88.50 ng/L and 420.08±87.65ng/L,P<0.05),interleukin-8(415.54±68.43 ng/L vs 505.80±66.90 ng/L and 510.43±68.23ng/L,P<0.05)and serum amyloid A(270.06±78.49 mg/L vs 344.41±81.96 mg/L and 350.60±80.42 mg/L,P<0.05)were significantly lower in group A compared to those in groups B and group C.The length of hospital stay in group A was significantly lower than those in groups B and group C(24.50±4.16 d vs 35.54±6.62 d and 38.89±7.10 d,P<0.05).The hospitalization expenses in group A were also significantly lower than those in groups B and groups C[2.70(1.20,3.55)ten-thousand-yuan vs 5.50(2.98,7.12)ten-thousand-yuan and 6.00(3.10,8.05)ten-thousand-yuan,P<0.05).The incidence of complications in group A was markedly lower than that in group C(5.62%vs 25.00%,P<0.05),and similar to group B(P>0.05).CONCLUSION Percutaneous catheter drainage for the treatment of SAP complicated by intra-abdominal fluid accumulation is most effective when performed within 2 d of onset.
基金This work has been supported by National Key R&D Program of China No.2022YFF0503804.
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.
文摘Fracturing operations can effectively improve the production of low-permeable reservoirs. The performance of fracturing fluids directly affects the fracturing efficiency and back flow capacity. As polymerbased fracturing fluids(such as guar gum(GG), polyacrylamide(HPAM), etc.) are high-viscosity fluids formed by viscosifiers and crosslinking agents, the degree of gel breakage after the fracturing operation directly influences the damage degree to the reservoir matrix and the mobility of oil angd gas produced from the reservoir into the wellbore. This study compared the viscosity, molecular weight, and particle size of the fracturing fluid after gel breakage prepared by GG and HPAM as viscosifiers, as well as evaluate their damage to the core. Results show that the viscosities of the gel-breaking fluid increased with the concentration of the viscosifier for both the HPAM-based and GG-based fracturing fluids. For the breaking fluid with the same viscosity, the molecular weight in the HPAM-based gel-breaking fluid was much larger than that in the GG-based system. Moreover, for the gel-breaking fluid with the same viscosity, the molecular particle size of the residual polymers in the HPAM-based system was smaller than that in the GG-based system. The damage to the core with the permeability of 1 × 10^(-3)μm^(2) caused by both the HPAM-based and GG-based gel-breaking fluids decreased with the increase in the solution viscosity. For the gel-breaking fluid systems with the same viscosity(i.e., 2-4 mPa s), the damage of HPAM-based fracturing fluid to low-permeability cores was greater than the GG-based fracturing fluid(45.6%-80.2%) since it had a smaller molecular particle size, ranging from 66.2% to 77.0%. This paper proposed that the damage caused by hydraulic fracturing in rock cores was related to the partilce size of residual polymers in gel-breaking solution, rather than its molecular weight. It was helpful for screening and optimizing viscosifiers used in hydraulic fracturing process.
文摘Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.
文摘In the framework of a mineral system approach,a combination of components is required to develop a mineral system.This includes the whole-lithosphere architecture,which controls the transport of ore-forming fluids,and favorable tectonic and geodynamic processes,occurring at various spatial and temporal scales,that influence the genesis and evolution of ore-forming fluids(Huston et al.,2016;Groves et al.,2018;Davies et al.,2020).Knowledge of the deep structural framework can advance the understanding of the development of a mineral system and the emplacement of mineral deposits.Deep geophysical exploration carried out with this aim is increasingly important for targeting new ore deposits in unexplored and underexplored regions(Dentith et al.,2018;Dentith,2019).
文摘In recent years,the integration of stochastic techniques,especially those based on artificial neural networks,has emerged as a pivotal advancement in the field of computational fluid dynamics.These techniques offer a powerful framework for the analysis of complex fluid flow phenomena and address the uncertainties inherent in fluid dynamics systems.Following this trend,the current investigation portrays the design and construction of an important technique named swarming optimized neuroheuristic intelligence with the competency of artificial neural networks to analyze nonlinear viscoelastic magneto-hydrodynamic Prandtl-Eyring fluid flow model,with diffusive magnetic layers effect along an extended sheet.The currently designed computational technique is established using inverse multiquadric radial basis activation function through the hybridization of a well-known global searching technique of particle swarm optimization and sequential quadratic programming,a technique capable of rapid convergence locally.The most appropriate scaling group involved transformations that are implemented on governing equations of the suggested fluidic model to convert it from a system of nonlinear partial differential equations into a dimensionless form of a third-order nonlinear ordinary differential equation.The transformed/reduced fluid flow model is solved for sundry variations of physical quantities using the designed scheme and outcomes are matched consistently with Adam's numerical technique with negligible magnitude of absolute errors and mean square errors.Moreover,it is revealed that the velocity of the fluid depreciates in the presence of a strong magnetic field effect.The efficacy of the designed solver is depicted evidently through rigorous statistical observations via exhaustive numerical experimentation of the fluidic problem.
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).