Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradable,t...Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradable,threatening the environment and human health.Herein,we have developed versatile microfibre-based wearables by combining many advantages in one platform of biodegradable polylactic acid(PLA)and melt electrowriting strategy.Diverse potential applications of PLA wearables are achieved byflexibly designing their printingfiles,components and structures.Three-dimensional printingfiles are generated from two-dimensional images to fabricate‘embroidery-like’patterns.PLA/aggregation-induced emissionfluorogens(AIE)chemosensors exhibit colorimetric andfluorescent colour changes upon exposure to amine vapours.Janus PLA-cotton textiles with a hydropho-bic/hydrophilic structure could facilitate unidirectional draining of sweats which is favourable for the management of temperature and humidity on the surface of skin.The proposed platform can not only broaden the design possibilities in 3D/4D printing but also offer wide potential applications for functional wearables.展开更多
基金Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project,Grant/Award Number:HZQB-KCZYB-2020030Hong Kong RGC Theme-based Research Scheme,Grant/Award Number:AoE/M-402/20Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20220818101204010。
文摘Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradable,threatening the environment and human health.Herein,we have developed versatile microfibre-based wearables by combining many advantages in one platform of biodegradable polylactic acid(PLA)and melt electrowriting strategy.Diverse potential applications of PLA wearables are achieved byflexibly designing their printingfiles,components and structures.Three-dimensional printingfiles are generated from two-dimensional images to fabricate‘embroidery-like’patterns.PLA/aggregation-induced emissionfluorogens(AIE)chemosensors exhibit colorimetric andfluorescent colour changes upon exposure to amine vapours.Janus PLA-cotton textiles with a hydropho-bic/hydrophilic structure could facilitate unidirectional draining of sweats which is favourable for the management of temperature and humidity on the surface of skin.The proposed platform can not only broaden the design possibilities in 3D/4D printing but also offer wide potential applications for functional wearables.