The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this da...The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.展开更多
Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafte...Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafted feature sets are used which are not adaptive for different image domains.To overcome this,an evolu-tionary learning method is developed to automatically learn the spatial-spectral features for classification.A modified Firefly Algorithm(FA)which achieves maximum classification accuracy with reduced size of feature set is proposed to gain the interest of feature selection for this purpose.For extracting the most effi-cient features from the data set,we have used 3-D discrete wavelet transform which decompose the multispectral image in all three dimensions.For selecting spatial and spectral features we have studied three different approaches namely overlapping window(OW-3DFS),non-overlapping window(NW-3DFS)adaptive window cube(AW-3DFS)and Pixel based technique.Fivefold Multiclass Support Vector Machine(MSVM)is used for classification purpose.Experiments con-ducted on Madurai LISS IV multispectral image exploited that the adaptive win-dow approach is used to increase the classification accuracy.展开更多
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th...Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.展开更多
In this digital era,Cardio Vascular Disease(CVD)has become the lead-ing cause of death which has led to the mortality of 17.9 million lives each year.Earlier Diagnosis of the people who are at higher risk of CVDs help...In this digital era,Cardio Vascular Disease(CVD)has become the lead-ing cause of death which has led to the mortality of 17.9 million lives each year.Earlier Diagnosis of the people who are at higher risk of CVDs helps them to receive proper treatment and helps prevent deaths.It becomes inevitable to pro-pose a solution to predict the CVD with high accuracy.A system for predicting Cardio Vascular Disease using Deep Neural Network with Binarized Butterfly Optimization Algorithm(DNN–BBoA)is proposed.The BBoA is incorporated to select the best features.The optimal features are fed to the deep neural network classifier and it improves prediction accuracy and reduces the time complexity.The usage of a deep neural network further helps to improve the prediction accu-racy with minimal complexity.The proposed system is tested with two datasets namely the Heart disease dataset from UCI repository and CVD dataset from Kag-gle Repository.The proposed work is compared with different machine learning classifiers such as Support Vector Machine,Random Forest,and Decision Tree Classifier.The accuracy of the proposed DNN–BBoA is 99.35%for the heart dis-ease data set from UCI repository yielding an accuracy of 80.98%for Kaggle repository for cardiovascular disease dataset.展开更多
In a hot-humid tropical climate,indoor thermal performance can be enhanced by comfort ventilation.Indoor venti-lation depends upon building opening size.But risks involved in providing openings include ingress of mosq...In a hot-humid tropical climate,indoor thermal performance can be enhanced by comfort ventilation.Indoor venti-lation depends upon building opening size.But risks involved in providing openings include ingress of mosquitoes and insects which thrive in the tropical climate.A practical and prevalent option to prevent insects in ventilated dwellings of the tropical,hot-humid city of Chennai,India is through the use offly screens.Fly screens,when used over open-ings,prevent a certain quantum of solar radiation and wind from entering inside the rooms.Reduced direct solar radiation prevents the indoors from heating up,while reduced wind movement prevents the cross ventilation.There-fore,it is important to know the indoor thermal performance of ventilated rooms in the presence offly screens with changing opening sizes.The criterion to evaluate indoor thermal performance in this paper is indoor air temperature.The aim of this research is to investigate the influence offly screens on openings with varying sizes,in a naturally ventilated dwelling in the hot-humid climate of Chennai,India,during the summer period.The results of the study show thatfly screens raise the indoor air temperature when openings are in the range of 100%to 35%of the roomfloor area.There is no significant change in the indoor air temperature when the opening sizes are less than 30%of the roomfloor area.展开更多
文摘The content-basedfiltering technique has been used effectively in a variety of Recommender Systems(RS).The user explicitly or implicitly provides data in the Content-Based Recommender System.The system collects this data and creates a profile for all the users,and the recommendation is generated by the user profile.The recommendation generated via content-basedfiltering is provided by observing just a single user’s profile.The primary objective of this RS is to recommend a list of movies based on the user’s preferences.A con-tent-based movie recommendation model is proposed in this research,which recommends movies based on the user’s profile from the Facebook platform.The recommendation system is built with a hybrid model that combines the Mon-arch Butterfly Optimization(MBO)with the Deep Belief Network(DBN).For feature selection,the MBO is utilized,while DBN is used for classification.The datasets used in the experiment are collected from Facebook and MovieLens.The dataset features are evaluated for performance evaluation to validate if data with various attributes can solve the matching recommendations.Eachfile is com-pared with features that prove the features will support movie recommendations.The proposed model’s mean absolute error(MAE)and root-mean-square error(RMSE)values are 0.716 and 0.915,and its precision and recall are 97.35 and 96.60 percent,respectively.Extensive tests have demonstrated the advantages of the proposed method in terms of MAE,RMSE,Precision,and Recall compared to state-of-the-art algorithms such as Fuzzy C-means with Bat algorithm(FCM-BAT),Collaborativefiltering with k-NN and the normalized discounted cumulative gain method(CF-kNN+NDCG),User profile correlation-based similarity(UPCSim),and Deep Autoencoder.
文摘Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafted feature sets are used which are not adaptive for different image domains.To overcome this,an evolu-tionary learning method is developed to automatically learn the spatial-spectral features for classification.A modified Firefly Algorithm(FA)which achieves maximum classification accuracy with reduced size of feature set is proposed to gain the interest of feature selection for this purpose.For extracting the most effi-cient features from the data set,we have used 3-D discrete wavelet transform which decompose the multispectral image in all three dimensions.For selecting spatial and spectral features we have studied three different approaches namely overlapping window(OW-3DFS),non-overlapping window(NW-3DFS)adaptive window cube(AW-3DFS)and Pixel based technique.Fivefold Multiclass Support Vector Machine(MSVM)is used for classification purpose.Experiments con-ducted on Madurai LISS IV multispectral image exploited that the adaptive win-dow approach is used to increase the classification accuracy.
文摘Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc.
文摘In this digital era,Cardio Vascular Disease(CVD)has become the lead-ing cause of death which has led to the mortality of 17.9 million lives each year.Earlier Diagnosis of the people who are at higher risk of CVDs helps them to receive proper treatment and helps prevent deaths.It becomes inevitable to pro-pose a solution to predict the CVD with high accuracy.A system for predicting Cardio Vascular Disease using Deep Neural Network with Binarized Butterfly Optimization Algorithm(DNN–BBoA)is proposed.The BBoA is incorporated to select the best features.The optimal features are fed to the deep neural network classifier and it improves prediction accuracy and reduces the time complexity.The usage of a deep neural network further helps to improve the prediction accu-racy with minimal complexity.The proposed system is tested with two datasets namely the Heart disease dataset from UCI repository and CVD dataset from Kag-gle Repository.The proposed work is compared with different machine learning classifiers such as Support Vector Machine,Random Forest,and Decision Tree Classifier.The accuracy of the proposed DNN–BBoA is 99.35%for the heart dis-ease data set from UCI repository yielding an accuracy of 80.98%for Kaggle repository for cardiovascular disease dataset.
文摘In a hot-humid tropical climate,indoor thermal performance can be enhanced by comfort ventilation.Indoor venti-lation depends upon building opening size.But risks involved in providing openings include ingress of mosquitoes and insects which thrive in the tropical climate.A practical and prevalent option to prevent insects in ventilated dwellings of the tropical,hot-humid city of Chennai,India is through the use offly screens.Fly screens,when used over open-ings,prevent a certain quantum of solar radiation and wind from entering inside the rooms.Reduced direct solar radiation prevents the indoors from heating up,while reduced wind movement prevents the cross ventilation.There-fore,it is important to know the indoor thermal performance of ventilated rooms in the presence offly screens with changing opening sizes.The criterion to evaluate indoor thermal performance in this paper is indoor air temperature.The aim of this research is to investigate the influence offly screens on openings with varying sizes,in a naturally ventilated dwelling in the hot-humid climate of Chennai,India,during the summer period.The results of the study show thatfly screens raise the indoor air temperature when openings are in the range of 100%to 35%of the roomfloor area.There is no significant change in the indoor air temperature when the opening sizes are less than 30%of the roomfloor area.