期刊文献+
共找到22,748篇文章
< 1 2 250 >
每页显示 20 50 100
引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法 被引量:10
1
作者 张华卫 张文飞 +2 位作者 蒋占军 廉敬 吴佰靖 《计算机科学与探索》 CSCD 北大核心 2024年第2期453-464,共12页
目前基于通用YOLO系列的遥感目标检测算法存在并未充分利用图像的全局上下文信息,在特征融合金字塔部分并未充分考虑缩小融合特征之间的语义鸿沟、抑制冗余信息干扰的缺点。在结合YOLO算法优点的基础上提出GUS-YOLO算法,其拥有一个能够... 目前基于通用YOLO系列的遥感目标检测算法存在并未充分利用图像的全局上下文信息,在特征融合金字塔部分并未充分考虑缩小融合特征之间的语义鸿沟、抑制冗余信息干扰的缺点。在结合YOLO算法优点的基础上提出GUS-YOLO算法,其拥有一个能够充分利用全局上下文信息的骨干网络Global Backbone。除此之外,该算法在融合特征金字塔自顶向下的结构中引入Attention Gate模块,可以突出必要的特征信息,抑制冗余信息。另外,为Attention Gate模块设计了最佳的网络结构,提出了网络的特征融合结构U-Net。最后,为克服ReLU函数可能导致模型梯度不再更新的问题,该算法将Attention Gate模块的激活函数升级为可学习的SMU激活函数,提高模型鲁棒性。在NWPU VHR-10遥感数据集上,该算法相较于YOLOV7算法取得宽松指标mAP^(0.50)1.64个百分点和严格指标mAP^(0.75)9.39个百分点的性能提升。相较于目前主流的七种检测算法,该算法取得较好的检测性能。 展开更多
关键词 遥感图像 Global Backbone Attention gate SMU U-neck
下载PDF
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:4
2
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSSCI CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:2
3
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
下载PDF
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
4
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
5
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
6
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:1
7
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 长短期记忆网络 门控循环单元
下载PDF
基于FPGA的自滑动同步法TFT-LCD屏TCON的实现 被引量:1
8
作者 王哲 祝月文 +1 位作者 王素珍 邹开元 《中国电子科学研究院学报》 2024年第1期30-41,共12页
不同厂家、不同尺寸、不同分辨率的TFT-LCD屏与时序控制器TCON的接口不同,对应不同的差分信号格式。为了适应不同屏的图像显示,需要一种可编程的时序控制器TCON。通过在FPGA芯片上采用自滑动同步法,实现了TFT-LCD屏的TCON系统。该系统... 不同厂家、不同尺寸、不同分辨率的TFT-LCD屏与时序控制器TCON的接口不同,对应不同的差分信号格式。为了适应不同屏的图像显示,需要一种可编程的时序控制器TCON。通过在FPGA芯片上采用自滑动同步法,实现了TFT-LCD屏的TCON系统。该系统从视频处理主板输出的差分信号中提取视频数据,提出通过自滑动同步法使之与同步控制信号对齐;将提取的视频数据转换为源驱动器的输入信号,即mini-LVDS或RSDS格式的差分信号,同时产生门驱动器的时序信号;由源驱动器和门驱动器输出的信号驱动TFT-LCD屏显示图像信号。为了测试TCON的性能,使用两块FPGA电路板进行实验。一块FPGA电路板实现TCON时序控制器;另一块作为TCON的输入测试信号源,用于测试所设计的TCON性能。实验结果显示,所设计的TCON能够从LVDS视频差分数据中正确解析出视频数据,并转换为屏的源驱动器和门驱动器信号,驱动TFT-LCD屏显示视频信号。通过对比分析可知,使用自滑动同步法具有资源消耗少,功耗较低等优点。 展开更多
关键词 TCON FPGA LVDS信号 自滑动同步法 源驱动器 门驱动器
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:2
9
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
融合Mar-GLSTM的流程生产工艺质量预测算法 被引量:1
10
作者 阴艳超 苏逸凡 +3 位作者 唐军 林文强 蒲昊苒 汪霖宇 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期942-957,共16页
针对流程生产连续性强、时序耦合复杂等特点,传统神经网络不具备长期记忆能力,且在深层次网络训练时易出现训练参数灾难、梯度爆炸等问题,提出基于马尔可夫优化的融合门控循环单元(GRU)与长短期记忆网络(LSTM)的组合预测模型(Mar-G LSTM... 针对流程生产连续性强、时序耦合复杂等特点,传统神经网络不具备长期记忆能力,且在深层次网络训练时易出现训练参数灾难、梯度爆炸等问题,提出基于马尔可夫优化的融合门控循环单元(GRU)与长短期记忆网络(LSTM)的组合预测模型(Mar-G LSTM)。首先在循环神经网络结构中融入门控机制构建深度LSTM神经网络模型,对流程生产时序数据信息进行选择性记忆,学习时序数据序列的信息依赖,进而解决训练过程中的梯度爆炸问题;同时结合马尔可夫链对GRU-LSTM模型的预测结果进行修正优化,在降低模型的复杂度的情况下进一步提高了模型的预测精度。最后,结合某流程生产线的工艺数据进行分析验证,结果表明,Mar-G LSTM算法在预测精度上较随机森林模型、门控循环单元神经网络模型(GRU)、长短期记忆神经网络模型(LSTM)和卷积神经网络与门控循环单元网络组合模型(CNN-GRU)分别提高了37.42%、21.32%、17.91%和12.56%,所提Mar-G LSTM算法可实现流程生产质量的准确预测,为降低工艺参数调控任务的完成时间提供了思路和实现途径。 展开更多
关键词 流程生产 工艺质量预测 门控循环单元 长短期记忆网络 马尔可夫链
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
11
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(LSTM) 注意力机制 卷积神经网络(CNN)
下载PDF
基于GRA-GRU的淮河流域水质预测研究 被引量:1
12
作者 陈静 李海洋 《安全与环境学报》 CAS CSCD 北大核心 2024年第1期376-387,共12页
水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域... 水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。 展开更多
关键词 环境工程学 淮河 线性插值 灰色关联分析 门控循环单元 水质预测
下载PDF
基于模态分解及GRU-XGBoost短期电力负荷预测 被引量:1
13
作者 冉启武 张宇航 《电网与清洁能源》 CSCD 北大核心 2024年第4期18-27,34,共11页
精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特... 精确的短期电力负荷预测能有效提高电力系统运营水平。针对电力负荷数据受多种因素影响,波动性和随机性强等问题,提出了一种基于模态分解及混合模型的负荷预测方法。首先,采用主成分分析法(principal component analysis,PCA)对负荷特征向量进行处理,去掉冗余信息,再用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将历史负荷分解为简化的几个子序列;其次,选择引入样本熵(sample entropy,SE)来计算子序列熵值,将相近的子序列重构得到随机、细节、低频和趋势分量后选用不同结构门控循环单元(gate recurrent unit,GRU)对不同分量类型进行预测,再使用极致梯度提升模型(extreme gradient boosting,XGBoost)对各分量残差进行拟合,各重组序列的预测值为GRU预测值与XBGoost拟合值之和,重组各序列得到最终预测值。选取3年时电力负荷数据进行实验,结果表明,所提模型的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolutepercentage error,MAPE)和平均绝对误差(mean absolute error,MAE)分别为370.676 MW、99.07%和246.89 MW,与单一模型和混合模型相比,实现了评价指标的明显减少。 展开更多
关键词 负荷预测 主成分分析 CEEMDAN 样本熵 门控循环单元 极致梯度提升模型
下载PDF
基于U-NET的双分支海上SAR溢油检测模型
14
作者 盛辉 曹文俊 +3 位作者 刘善伟 王大伟 杨俊芳 张杰 《海洋科学》 CAS CSCD 北大核心 2024年第7期1-10,共10页
为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意... 为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意力门融合纹理信息和灰度信息。实验利用1景海丝一号(HISEA-1)SAR数据构建样本训练集进行AW-net模型训练,分别应用1景HISEA-1 SAR数据和1景Radarsat-2SAR数据开展模型测试,溢油检测准确率均优于U-NET、AttentionU-NET和FCN等语义分割模型,说明该模型具有较强的强鲁棒性和应用潜力。 展开更多
关键词 溢油检测 SAR U-NET 注意力门 双分支编码器
下载PDF
基于VMD-TCN-GRU模型的水质预测研究 被引量:1
15
作者 项新建 许宏辉 +4 位作者 谢建立 丁祎 胡海斌 郑永平 杨斌 《人民黄河》 CAS 北大核心 2024年第3期92-97,共6页
为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此... 为充分挖掘水质数据在短时震荡中的变化特征,提升预测模型的精度,提出一种基于VMD(变分模态分解)、TCN(卷积时间神经网络)及GRU(门控循环单元)组成的混合水质预测模型,采用VMD-TCN-GRU模型对汾河水库出水口高锰酸盐指数进行预测,并与此类研究中常见的SVR(支持向量回归)、LSTM(长短期记忆神经网络)、TCN和CNN-LSTM(卷积神经网络-长短期记忆神经网络)这4种模型预测结果对比表明:VMD-TCN-GRU模型能更好挖掘水质数据在短时震荡过程中的特征信息,提升水质预测精度;VMD-TCN-GRU模型的MAE(平均绝对误差)、RMSE(均方根误差)下降,R^(2)(确定系数)提高,其MAE、RMSE、R^(2)分别为0.0553、0.0717、0.9351;其预测性能优越,预测精度更高且拥有更强的泛化能力,可以应用于汾河水质预测。 展开更多
关键词 水质预测 混合模型 变分模态分解 卷积时间神经网络 门控循环单元 时间序列 汾河
下载PDF
基于Bo-BiLSTM网络的IGBT老化失效预测方法 被引量:1
16
作者 万庆祝 于佳松 +1 位作者 佟庆彬 闵现娟 《电气技术》 2024年第3期1-10,共10页
针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失... 针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失效特征数据库,最后利用Matlab软件构造Bo-BiLSTM网络预测失效特征参数数据。选取常用回归预测性能评估指标将长短期记忆(LSTM)网络模型、BiLSTM网络模型与Bo-BiLSTM网络模型的预测结果进行对比分析。结果表明,Bo-BiLSTM网络的模型拟合精度更高,基于Bo-BiLSTM网络的IGBT老化失效预测方法具有较好的预测效果,能够应用于IGBT的失效预测。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 贝叶斯优化 双向长短期记忆(BiLSTM)网络 老化失效预测
下载PDF
P2X7R过表达的巨噬细胞MSU晶体诱导痛风炎症反应过程中IL-1β、TNF-α、NLRP3表达观察
17
作者 秦丽岩 冀琨 +3 位作者 陈邬锦 张蓓 孙玉萍 李瑞 《山东医药》 CAS 2024年第12期41-45,共5页
目的观察嘌呤能受体P2X配体门控离子通道7的配体(P2X7R)过表达白血病细胞诱导分化的巨噬细胞单钠尿酸盐(MSU)晶体诱导痛风炎症反应过程中NOD样受体家族3(NLRP3)蛋白、IL-1β、TNF-α表达情况。方法取人单核细胞白血病细胞系THP-1,并随... 目的观察嘌呤能受体P2X配体门控离子通道7的配体(P2X7R)过表达白血病细胞诱导分化的巨噬细胞单钠尿酸盐(MSU)晶体诱导痛风炎症反应过程中NOD样受体家族3(NLRP3)蛋白、IL-1β、TNF-α表达情况。方法取人单核细胞白血病细胞系THP-1,并随机分为过表达组、空白组、模型组、对照组;过表达组和空白组分别转染P2X7R过表达质粒、空白载体质粒,转染5 d,将过表达组、空白组、模型组THP-1细胞用100 ng/mL的PMA刺激3 h后分化为巨噬细胞,另将MSU晶体用氢氧化钠溶解配制成浓度为100μg/mL的MSU乳糜状悬液加入培养液中孵育6 h;对照组正常培养。分别采用RT-PCR法和Western blot法测算巨噬细胞P2X7R mRNA、蛋白,ELISA法检测巨噬细胞上清液IL-1β、TNF-α,Western blot法测算巨噬细胞NOD样受体家族3(NLRP3)蛋白。结果与对照组比较,过表达组、空白组、模型组P2X7R mRNA和蛋白相对表达量升高,细胞上清液IL-1β、TNF-α水平升高,细胞NLRP3蛋白相对表达量升高(P均<0.05);与模型组、空白组比较,过表达组P2X7R mRNA、蛋白相对表达量升高,细胞上清液IL-1β、TNF-α水平升高,细胞NLRP3蛋白相对表达量升高(P均<0.05)。结论P2X7R过表达白血病细胞诱导分化的巨噬细胞MSU晶体诱导痛风炎症反应过程中IL-1β、TNF-α、NLRP3表达增加,IL-1β、TNF-α水平升高可能通过激活NLRP3蛋白来实现。 展开更多
关键词 嘌呤能受体P2X配体门控离子通道7的配体 痛风 炎症因子 NOD样受体家族3炎症小体
下载PDF
^(99m)Tc-MIBI门控心肌灌注显像对行沙库巴曲缬沙坦治疗的冠心病患者心肌血流灌注及心功能的评估价值
18
作者 郝亚逢 张利峰 +4 位作者 王学智 李远 苗睿 王献忠 武国霞 《陕西医学杂志》 CAS 2024年第4期514-517,522,共5页
目的:探究^(99m)Tc-MIBI门控心肌灌注显像(GMPI)评估冠心病患者沙库巴曲缬沙坦治疗后心肌血流灌注及心功能的价值。方法:选取冠心病患者78例,入组患者均接受沙库巴曲缬沙坦治疗,采用^(99m)Tc-MIBI GMPI对患者的心肌血流灌注情况及心功... 目的:探究^(99m)Tc-MIBI门控心肌灌注显像(GMPI)评估冠心病患者沙库巴曲缬沙坦治疗后心肌血流灌注及心功能的价值。方法:选取冠心病患者78例,入组患者均接受沙库巴曲缬沙坦治疗,采用^(99m)Tc-MIBI GMPI对患者的心肌血流灌注情况及心功能指标进行检测,并以超声心动图及冠状动脉造影结果为参照,对^(99m)Tc-MIBI GMPI检查的准确性进行探究。结果:患者经冠状动脉造影检查结果与患者经^(99m)Tc-MIBI GMPI检查心肌血流灌注结果比较无统计学差异(P>0.05),经卡帕一致性检验,KAPPA值为0.826,一致性较好。患者经冠状动脉造影检查结果与患者经^(99m)Tc-MIBI GMPI心功能结果[舒张末期容积(EDV)、收缩末期容积(ESV)、左心室射血分数(LVEF)、心输出量(CO)]比较无统计学差异(均P>0.05),经ICC一致性检验,ICC=0.812,一致性较好。治疗后与治疗前比较,患者的心肌血流灌注有所好转,患者完全闭塞、重度狭窄占比降低,轻度狭窄占比升高(均P<0.05)。与治疗前比较,治疗后患者的EDV、ESV水平降低,LVEF、CO升高(均P<0.05)。78例患者经过治疗,出现8例症状性低血压,2例轻度血管性水肿,6例肾功能损伤,3例高钾血症,并发症发生率约为24.36%。结论:^(99m)Tc-MIBI GMPI评估心肌血流灌注及心功能情况与超声心动图及冠状动脉造影结果相一致,可以准确地反映冠心病患者经沙库巴曲缬沙坦治疗后的心肌血流灌注及心功能变化。经沙库巴曲缬沙坦治疗,患者的心肌血流灌注及心功能得到改善,但需要对患者的不良反应情况进行关注。 展开更多
关键词 ^(99m)Tc-MIBI门控心肌灌注显像 冠心病 沙库巴曲缬沙坦 心肌血流灌注 心功能
下载PDF
基于新型相似日选取和VMD-NGO-BiGRU的短期光伏功率预测
19
作者 王瑞 张璐婷 逯静 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期68-80,共13页
光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,... 光伏功率预测在现代电力系统调度和运行中起着重要作用.针对光伏发电功率的多变性和复杂性,提出了一种基于新型相似日选取和北方苍鹰算法(Northern Goshawk Optimization,NGO)优化双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)的短期光伏功率预测方法.首先,利用斯皮尔曼相关系数选取主要气象因子,通过变分模态分解(Variational Mode Decomposition,VMD)将原始光伏功率和最大气象因子分解重构为一系列子信号.其次,通过构建新的评价指标筛选出相似日数据集,利用一组BiGRU建立以相似日子信号为网络输入的深度学习模型,并利用NGO对每个BiGRU网络的超参数进行有效优化.最后,对各子信号的预测结果进行综合,得到最终的光伏功率预测值.仿真结果表明,所提混合深度学习方法在预测精度和计算效率方面均优于其他方法. 展开更多
关键词 光伏功率预测 变分模态分解 双向门控循环单元 北方苍鹰算法
下载PDF
基于PCA-ShapeDTW-QWGRU的分布式光伏集群短期功率预测
20
作者 欧阳静 秦龙 +3 位作者 王坚锋 尹康 褚礼东 潘国兵 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期458-467,共10页
针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚... 针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚类算法(PCA-OPTICS)的集群划分方法;针对目前选取代表电站与集群相似性较低的问题,提出基于改进的动态时间规整算法(ShapeDTW)的代表电站的选取方法,利用ShapeDTW度量相似性距离,选取最小值作为代表电站,并利用基于均方根传播梯度下降法优化的量子加权门控循环单元(RMSprop-QWGRU)模型进行预测;为了解决代表电站与集群功率的变换系数转换差异较大的问题,采用实时变换系数对代表电站进行集群功率值预测计算。实验结果表明,所提方法能有效提升光伏集群功率预测的精度。 展开更多
关键词 光伏功率预测 集群划分 主成分分析 动态时间规整 量子加权门控循环单元
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部