This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this expe...This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this experiment, varying concentrations of zinc oxide (ZnO) were combined with a constant amount of pectin to study their effects on the final solution’s characteristics. Initially, ZnO and pectin solutions were prepared individually and subjected to magnetic stirring and sonication. The experiment involved three different concentrations of ZnO: 0.1 g, 0.02 g, and 0.03 g, while the weight of pectin remained constant at 0.05g throughout. After individual preparation, the solutions were mixed, further stirred, and subjected to sonication. Two analysis techniques, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA), were employed to characterize the samples. SEM provided insights into surface morphology and chemical composition, while TGA analyzed mass changes over temperature variations, offering valuable information on material properties. The significance and applications of these techniques in material characterization and analysis were discussed, highlighting their roles in understanding physical and chemical phenomena. The presence of ZnO nanoparticles enhanced the thermal stability of the pectin nanofluids. Contact angle measurements were performed to evaluate the hydrophilicity of the nanofluids. The contact angle trend indicated an increase in hydrophobicity with an increasing concentration of ZnO in the pectin nanofluids. The measured contact angles supported the high stability of the synthesized nanofluids. Overall, this study provides valuable insights into the incorporation of ZnO nanoparticles into pectin nanofluids and their impact on the thermophysical characteristics. The findings contribute to the development of nanofluids for potential applications in drug release and biomedical fields.展开更多
Introduction: After an episode of spontaneous infection of ascitic fluid (ISLA). The recurrence of ISLA at one year is greater than 70%. We studied the risk factors associated with the occurrence of recurrence. Patien...Introduction: After an episode of spontaneous infection of ascitic fluid (ISLA). The recurrence of ISLA at one year is greater than 70%. We studied the risk factors associated with the occurrence of recurrence. Patients and methods: this was a retrospective, descriptive and analytical study of patient files, hospitalized in the department for 12 months, the choice of the sample was of convenience. Results: We have 1347 patient files collected including 389 cases of cirrhosis. We had 37 files of cirrhotic patients with ISLA including 28 cures without recurrence of ISLA, 08 files of patients with recurrence of ISLA and 03 excluded, i.e. a hospital prevalence of recurrence of 0.6% and a prevalence in cirrhotic patients of 23.5%. The most common antecedents were: hospital contact recent (35.3%), the concept of iterative ascites punctures (32.3%), the presence of HCC (29.4%), hepatic encephalopathy (20.6%) and digestive hemorrhage (14.7%). In univariate analysis, recent digestive bleeding was associated with an increased risk of recurrence (OR 7.2, 95% CI 0.96 - 67.1). HBV (62.5%) is the main etiology of cirrhosis. The PNN rate at 250 - 499 mm3 (62.5%), the protein level 3 (75%). Patients on secondary prophylaxis with NORFLOXACIN were 25%. Recurrence of ISLA was treated with CEFTRIAXONE 2 g/24 hours. Conclusion: Recurrence of ISLA is serious, the predictive factors for recurrence are, hospital contact recent, the concept of iterative ascites punctures, the presence of HCC, the presence of hepatic encephalopathy and digestive bleeding.展开更多
Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria invol...Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria involved in effusion fluid infections in paediatrics in order to improve the choice of probabilistic antibiotics therapy. Methods: A cross-sectional, descriptive study was used in children aged 0 to 15 years from 2017 to 2020 at the Charles De Gaulle Pediatric University Hospital Center (CHUP-CDG) in Ouagadougou. Classical bacteriology methods such as macroscopy, Gram staining, identification galleries and antibiotics susceptibility testing were used. Results: Of 231 samples, 64 bacteria were isolated. The most common bacterial strains of pleural fluid were Staphylococcus aureus (25%) and 40% for Enterobacteriaceae. Of the peritoneal fluid, 77% were Enterobacteriaceae with 57% Escherichia coli;and from joint fluid, 33% were S. aureus and 22% for P. aeruginosa. The overall susceptibility profile showed 29% extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), 10% methicillin-resistant S. aureus (MRSA), and 8% carbapenemases. Conclusion: Bacteriological profile is characterized by ESBL-producing Enterobacteriaceae and MRSA. The most active antibiotics were macrolides, aminoglycosides, and cefoxitin (methicillin) for Gram-positive cocci, carbapenems, and aminoglycosides for Gram-negative bacilli. Then, the monitoring of antibiotics resistance must be permanent.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A...The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.展开更多
Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low a...Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low aggravation efficiency, high friction resistance, etc., and the reduction of construction pressure cannot reach the theoretical effect. In view of the above problems, this paper adopts the weighting agent HD160 and the drag reducing agent JHFR-2 to form a new type of weighted slippery water fracturing fluid system. And the weighting performance, drag reduction performance, corrosion performance, anti-expansion performance and reservoir damage of this system were studied. The results show that the density of the system is adjustable within 1.1 - 1.6 g·cm−3, and the drag reduction rate can be up to 68% at 1.5 g·cm−3, with low corrosion rate, surface tension less than 28 mN·m−1, anti-expansion rate as high as 94.5%, and the damage rate of the reservoir permeability is less than 10%, which is of good application prospect.展开更多
Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with un...Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field.展开更多
We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by perco...We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.展开更多
At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cycli...At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.展开更多
文摘This thesis investigates the influence of zinc oxide (ZnO) on the thermophysical characteristics of natural polymer-based nanofluids. The focus is on pectin nanofluids with incorporated ZnO nanoparticles. In this experiment, varying concentrations of zinc oxide (ZnO) were combined with a constant amount of pectin to study their effects on the final solution’s characteristics. Initially, ZnO and pectin solutions were prepared individually and subjected to magnetic stirring and sonication. The experiment involved three different concentrations of ZnO: 0.1 g, 0.02 g, and 0.03 g, while the weight of pectin remained constant at 0.05g throughout. After individual preparation, the solutions were mixed, further stirred, and subjected to sonication. Two analysis techniques, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA), were employed to characterize the samples. SEM provided insights into surface morphology and chemical composition, while TGA analyzed mass changes over temperature variations, offering valuable information on material properties. The significance and applications of these techniques in material characterization and analysis were discussed, highlighting their roles in understanding physical and chemical phenomena. The presence of ZnO nanoparticles enhanced the thermal stability of the pectin nanofluids. Contact angle measurements were performed to evaluate the hydrophilicity of the nanofluids. The contact angle trend indicated an increase in hydrophobicity with an increasing concentration of ZnO in the pectin nanofluids. The measured contact angles supported the high stability of the synthesized nanofluids. Overall, this study provides valuable insights into the incorporation of ZnO nanoparticles into pectin nanofluids and their impact on the thermophysical characteristics. The findings contribute to the development of nanofluids for potential applications in drug release and biomedical fields.
文摘Introduction: After an episode of spontaneous infection of ascitic fluid (ISLA). The recurrence of ISLA at one year is greater than 70%. We studied the risk factors associated with the occurrence of recurrence. Patients and methods: this was a retrospective, descriptive and analytical study of patient files, hospitalized in the department for 12 months, the choice of the sample was of convenience. Results: We have 1347 patient files collected including 389 cases of cirrhosis. We had 37 files of cirrhotic patients with ISLA including 28 cures without recurrence of ISLA, 08 files of patients with recurrence of ISLA and 03 excluded, i.e. a hospital prevalence of recurrence of 0.6% and a prevalence in cirrhotic patients of 23.5%. The most common antecedents were: hospital contact recent (35.3%), the concept of iterative ascites punctures (32.3%), the presence of HCC (29.4%), hepatic encephalopathy (20.6%) and digestive hemorrhage (14.7%). In univariate analysis, recent digestive bleeding was associated with an increased risk of recurrence (OR 7.2, 95% CI 0.96 - 67.1). HBV (62.5%) is the main etiology of cirrhosis. The PNN rate at 250 - 499 mm3 (62.5%), the protein level 3 (75%). Patients on secondary prophylaxis with NORFLOXACIN were 25%. Recurrence of ISLA was treated with CEFTRIAXONE 2 g/24 hours. Conclusion: Recurrence of ISLA is serious, the predictive factors for recurrence are, hospital contact recent, the concept of iterative ascites punctures, the presence of HCC, the presence of hepatic encephalopathy and digestive bleeding.
文摘Introduction: Microbiology of effusion fluids in children in Burkina Faso is characterized by the scarcity of data. This work aimed to study the bacteriological and antibiotics susceptibility profile of bacteria involved in effusion fluid infections in paediatrics in order to improve the choice of probabilistic antibiotics therapy. Methods: A cross-sectional, descriptive study was used in children aged 0 to 15 years from 2017 to 2020 at the Charles De Gaulle Pediatric University Hospital Center (CHUP-CDG) in Ouagadougou. Classical bacteriology methods such as macroscopy, Gram staining, identification galleries and antibiotics susceptibility testing were used. Results: Of 231 samples, 64 bacteria were isolated. The most common bacterial strains of pleural fluid were Staphylococcus aureus (25%) and 40% for Enterobacteriaceae. Of the peritoneal fluid, 77% were Enterobacteriaceae with 57% Escherichia coli;and from joint fluid, 33% were S. aureus and 22% for P. aeruginosa. The overall susceptibility profile showed 29% extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), 10% methicillin-resistant S. aureus (MRSA), and 8% carbapenemases. Conclusion: Bacteriological profile is characterized by ESBL-producing Enterobacteriaceae and MRSA. The most active antibiotics were macrolides, aminoglycosides, and cefoxitin (methicillin) for Gram-positive cocci, carbapenems, and aminoglycosides for Gram-negative bacilli. Then, the monitoring of antibiotics resistance must be permanent.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
文摘The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.
文摘Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low aggravation efficiency, high friction resistance, etc., and the reduction of construction pressure cannot reach the theoretical effect. In view of the above problems, this paper adopts the weighting agent HD160 and the drag reducing agent JHFR-2 to form a new type of weighted slippery water fracturing fluid system. And the weighting performance, drag reduction performance, corrosion performance, anti-expansion performance and reservoir damage of this system were studied. The results show that the density of the system is adjustable within 1.1 - 1.6 g·cm−3, and the drag reduction rate can be up to 68% at 1.5 g·cm−3, with low corrosion rate, surface tension less than 28 mN·m−1, anti-expansion rate as high as 94.5%, and the damage rate of the reservoir permeability is less than 10%, which is of good application prospect.
文摘Simultaneous waveform inversion was used to predict lithofacies and fluid type across the field. Very often, characterizing reservoirs in terms of lithology and fluid type using conventional methods is replete with uncertainties, especially in marginal fields. An approach is employed in this study that integrated rock physics and waveform inverse modelling for lithology and fluid-type characterization to appropriately identify potential hydrocarbon saturated zones and their corresponding lithology. Seismic and well-log data were analyzed using Hampson Russel software. The method adopted includes lithofacies and fluid content analysis using rock physics parameters and seismic simultaneous inverse modelling. Rock physics analysis identified 2 broad reservoirs namely: HDZ1 and HDZ2 reservoirs. Results from the inverse modelling showed that low values of acoustic impedance from 19,743 to 20,487 (ft/s)(g/cc) reflect hydrocarbon-bearing reservoirs while medium to high values shows brine and shale respectively, with brine zone ranging from 20,487 to 22,531 (ft/s)(g/cc) and shale above 22,531 (ft/s)(g/cc). Two lithofacies were identified from inversion analysis of Vp/Vs and Mu-Rho, namely: sand and shale with VpVs 1.95 values respectively. Mu-Rho > 12.29 (GPa)(g/cc) and <12.29 (GPa) (g/cc) represent sand and shale respectively. From 3D volume, it was observed that a high accumulation of hydrocarbon was observed to be saturated at the north to the eastern part of the field forming a meandering channel. Sands were mainly distributed around the northeastern to the southwestern part of the field, that tends to be away from Well 029. This was also validated by the volume of rigidity modulus (Mu-Rho) showing high values indicating sands fall within the northeastern part of the field.
文摘We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO<sub>2</sub>, H<sub>2</sub>O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)<sub>T</sub>, between gaseous and liquid states along any isotherm from critical (T<sub>c</sub>) to Boyle (T<sub>B</sub>) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρ<sub>rs</sub>(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)<sub>T</sub> = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρ<sub>BW</sub>(T) = 2ρ<sub>PA</sub>(T) = 3ρ<sub>PB</sub>(T) = 3ρ<sub>RS</sub>(T)/2 for T T<sub>B</sub>. These simple relationships arise, because the higher virial coefficients (b<sub>n</sub>, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 T T<sub>B</sub>)<sub> </sub>within the gas phase. The Boyle-work line (p/ρ<sub>BW</sub>)<sub>T</sub> is related exactly at lower densities as T → T<sub>B</sub>, and accurately for liquid densities, by ρ<sub>BW</sub>(T) = −(b<sub>2</sub>/b<sub>3</sub>)<sub>T</sub>. The RS line, ω(T) = RT, defines a new liquid-density ground-state physical constant (ρ<sub>RS</sub>(0) = (2/3)ρ<sub>BW</sub>(0) for argon). Given the gas-liquid rigidity symmetry, the entire thermodynamic state functions below T<sub>B</sub> are obtainable from b<sub>2</sub>(T). A BW-line ground-state crystal density ρ<sub>BW</sub>(0) can be defined by the pair potential minimum. The Ar<sub>2</sub> pair potential, ∅ij</sub>(r<sub>ij</sub>) determines b<sub>2</sub>(T) analytically for all T. This report, therefore, advances the salient objective of liquid-state theory: an argon p(ρ,T) Equation-of-state is obtained from ∅<sub>ij</sub>(r<sub>ij</sub>) for all fluid states, without any adjustable parameters.
文摘At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.