Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
The Hilbert boundary value problem Re{λ(t) p√ψ+(t)} = c(t), t∈L of normal type with Holder continuous coefficients is discussed, where L is the unit circle |t| = 1,p ≥2 is any definite integer,ψ^+(t)...The Hilbert boundary value problem Re{λ(t) p√ψ+(t)} = c(t), t∈L of normal type with Holder continuous coefficients is discussed, where L is the unit circle |t| = 1,p ≥2 is any definite integer,ψ^+(t) is the boundary value of the unknown function ψ(z) holomorphic in |z| 〈 1 with single-valued continuous p√ψ+(t) on L.展开更多
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f sati...Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.展开更多
The Hǒlder continuity is proved for the gradient of the solution Jo the one-sided obstacle problem of the following variational inequality in the case 1<p<2
Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptima...Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptimal solutions and solvable superoptimal solutions.展开更多
Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate i...Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate is proved for S-matrix. The so-called finite step convergence for coincident components is discussed for nondegenerate discreted problems.展开更多
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
文摘The Hilbert boundary value problem Re{λ(t) p√ψ+(t)} = c(t), t∈L of normal type with Holder continuous coefficients is discussed, where L is the unit circle |t| = 1,p ≥2 is any definite integer,ψ^+(t) is the boundary value of the unknown function ψ(z) holomorphic in |z| 〈 1 with single-valued continuous p√ψ+(t) on L.
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
基金supported by NNSF of China (11171260)RFDP of Higher Education of China (20100141110054)Scientific Research Fund of Leshan Normal University (Z1265)
文摘Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.
基金in part by Zhongshan University Science Research Fund
文摘The Hǒlder continuity is proved for the gradient of the solution Jo the one-sided obstacle problem of the following variational inequality in the case 1<p<2
文摘Study of the SISO mixed H2/l1 problem for discrete time systems showed that there exists a unique optimal solution which can be approximated within any prescribed missing error bound in l2 norm with solvable suboptimal solutions and solvable superoptimal solutions.
文摘Additive Schwarz algorithms for solving the discrete problems of twrvside obstacle problems are proposed. The monotone convergence of the algorithms is established for M-matrix and the h-independent convergence rate is proved for S-matrix. The so-called finite step convergence for coincident components is discussed for nondegenerate discreted problems.