Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen c...Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.Methods: Twelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5km/h and 3.5km/h speeds during carrying no loads and three magnitudes of load(10.7kg, 21.4kg, 30kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption(VO2max) was measured at sea level and the two high altitudes, and respective relative workloads(% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.Results: The participants had significant reductions in VO2 max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5km/h at the two high altitudes.Conclusions: Considering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes. Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight.展开更多
To investigate genetic mechanisms of high altitude adaptations of animals living in the Tibetan Plateau, three mitochondrial genomes (mt-genome) of Tibetan horses living in Naqu (4,500 m) of Tibetan, Zhongdian (3...To investigate genetic mechanisms of high altitude adaptations of animals living in the Tibetan Plateau, three mitochondrial genomes (mt-genome) of Tibetan horses living in Naqu (4,500 m) of Tibetan, Zhongdian (3,300 m) and Deqin (3,100 m) of Yunnan province were sequenced. The structures and lengths of these three mt-genomes are similar to the Cheju horse, which is related to Tibetan horses, but little shorter than the Swedish horse. The pair-wise identity of these three horses on nucleotide level is more than 99.3%. When the gene encoding the mitochondrial protein of Tibetan horses was analyzed, we found that NADH6 has higher non-synonymous mutation rate in all of three Tibetan horses. This implies that NADH6 may play a role in Tibetan horses' high altitude adaptation. NADH6 is one of the subunits of the complex I in the respiratory chain. Furthermore, 7 D-loop sequences of Tibetan horse from different areas were sequenced, and the phylogeny tree was constructed to study the origin and evolutionary history of Tibetan horses. The result showed that the genetic diverse was high among Tibetan horses. All of Tibetan horses from Naqu were clustered into one clade, and Tibetan horses from Zhongdian and Deqin were clustered into others clades. The first molecular evidence of Tibetan horses indicated in this study is that Tibetan horse population might have multiple origins.展开更多
基金funded through Project No.S&T-09/DIP-251,C3.0 from the Defence Research and Development Organization(DRDO),Ministry of Defence,Government of India
文摘Background: The present study was designed to evaluate load carriage performance at extremely high altitudes with different loads and walking speeds in terms of physiological evaluation. The degree of maximum oxygen consumption changes at high altitudes was also examined.Methods: Twelve Indian Army soldiers were acclimatized at altitudes of 3,505 m and 4,300 m. They walked for 10 minutes on a motorized treadmill at 2.5km/h and 3.5km/h speeds during carrying no loads and three magnitudes of load(10.7kg, 21.4kg, 30kg) at both altitudes. Physiological parameters such as oxygen consumption, energy expenditure, heart rate, and ventilation were recorded for each breath using a gas analyzer. The rating of perceived exertion was also noted after each load carriage session. Maximal oxygen consumption(VO2max) was measured at sea level and the two high altitudes, and respective relative workloads(% of VO2max) were calculated from oxygen consumption. Repeated measure ANOVA was applied to reveal the significant effects of the independent variables.Results: The participants had significant reductions in VO2 max with rising altitude. Marked increases in almost all physiological parameters were observed with increasing load, altitude, and speed. The soldiers expressed heavy perceived exertion levels with higher loads at 3.5km/h at the two high altitudes.Conclusions: Considering the physiological responses, expressions of perceived exertion and changes in relative work load at both of the high altitudes. Indian soldiers are advised to walk slowly with adequate rest in between their schedules and to carry not more than 32% of their body weight.
基金This work was supported by a grant from Special Foundation of President of the Chinese Academy of Sciences & the Grant of Sub-project of National Basic Research Program of China (No. 2006CB504103).
文摘To investigate genetic mechanisms of high altitude adaptations of animals living in the Tibetan Plateau, three mitochondrial genomes (mt-genome) of Tibetan horses living in Naqu (4,500 m) of Tibetan, Zhongdian (3,300 m) and Deqin (3,100 m) of Yunnan province were sequenced. The structures and lengths of these three mt-genomes are similar to the Cheju horse, which is related to Tibetan horses, but little shorter than the Swedish horse. The pair-wise identity of these three horses on nucleotide level is more than 99.3%. When the gene encoding the mitochondrial protein of Tibetan horses was analyzed, we found that NADH6 has higher non-synonymous mutation rate in all of three Tibetan horses. This implies that NADH6 may play a role in Tibetan horses' high altitude adaptation. NADH6 is one of the subunits of the complex I in the respiratory chain. Furthermore, 7 D-loop sequences of Tibetan horse from different areas were sequenced, and the phylogeny tree was constructed to study the origin and evolutionary history of Tibetan horses. The result showed that the genetic diverse was high among Tibetan horses. All of Tibetan horses from Naqu were clustered into one clade, and Tibetan horses from Zhongdian and Deqin were clustered into others clades. The first molecular evidence of Tibetan horses indicated in this study is that Tibetan horse population might have multiple origins.