Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access sig...Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence...Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
Mobile internet technologies have transformed our daily lives,allowing us to connect,communi-cate,and access various services and applications anytime and anywhere.These technologies are set to play a significant role...Mobile internet technologies have transformed our daily lives,allowing us to connect,communi-cate,and access various services and applications anytime and anywhere.These technologies are set to play a significant role in the next generation of digital transformation,further increasing their impact by integrating with emerging technologies like 6G,quantum computing,and generative AI.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible t...Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.展开更多
Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of thi...Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.展开更多
Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enh...Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.展开更多
The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is w...The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.展开更多
Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,...Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,the effectiveness and acceptability of IBIs for various mental health disorders continue to be subject to scholarly debate.We performed an umbrella review of meta-analyses(MAs),conducting literature searches in PubMed,Web of Science,Embase,Cochrane and Ovid Medline from their inception to 17 January 2023.A total of 87MAs,reporting on 1683 randomised controlled trials and 295589 patients,were included.The results indicated that IBIs had a moderate effect on anxiety disorder(standardised mean difference(SMD)=0.53,95%CI 0.44 to 0.62)and post-traumatic stress disorder(PTSD)(SMD=0.63,95%CI 0.38 to 0.89).In contrast,the efficacy on depression(SMD=0.45,95%CI 0.39 to 0.52),addiction(SMD=0.23,95%CI 0.16 to 0.31),suicidal ideation(SMD=0.23,95%CI 0.16 to 0.30),stress(SMD=0.41,95%CI 0.33 to 0.48)and obsessive-compulsive disorder(SMD=0.47,95%CI 0.22 to 0.73)was relatively small.However,no significant effects were observed for personality disorders(SMD=0.07,95%CI-0.13 to 0.26).Our findings suggest a significant association between IBIs and improved mental health outcomes,with particular effectiveness noted in treating anxiety disorders and PTSD.However,it is noteworthy that the effectiveness of IBIs was impacted by high dropout rates during treatment.Furthermore,our results indicated that guided IBIs proved to be more effective than unguided ones,playing a positive role in reducing dropout rates and enhancing patient adherence rates.展开更多
Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is sti...Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.展开更多
Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is ...Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.展开更多
The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective se...The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There hav...As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers.展开更多
The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the ...The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the capability to make intelligent decisions.As a distributed learning paradigm,federated learning(FL)has emerged as a preferred solution in IoV.Compared to traditional centralized machine learning,FL reduces communication overhead and improves privacy protection.Despite these benefits,FL still faces some security and privacy concerns,such as poisoning attacks and inference attacks,prompting exploration into blockchain integration to enhance its security posture.This paper introduces a novel blockchain-enabled federated learning(BCFL)scheme with differential privacy(DP)tailored for IoV.In order to meet the performance demanding IoV environment,the proposed methodology integrates a consortium blockchain with Practical Byzantine Fault Tolerance(PBFT)consensus,which offers superior efficiency over the conventional public blockchains.In addition,the proposed approach utilizes the Differentially Private Stochastic Gradient Descent(DP-SGD)algorithm in the local training process of FL for enhanced privacy protection.Experiment results indicate that the integration of blockchain elevates the security level of FL in that the proposed approach effectively safeguards FL against poisoning attacks.On the other hand,the additional overhead associated with blockchain integration is also limited to a moderate level to meet the efficiency criteria of IoV.Furthermore,by incorporating DP,the proposed approach is shown to have the(ε-δ)privacy guarantee while maintaining an acceptable level of model accuracy.This enhancement effectively mitigates the threat of inference attacks on private information.展开更多
基金This study was supported in part by the National Natural Science Foundation of China(71973136 and 72061147002)the 2115 Talent Development Program of China Agricultural University.
文摘Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
文摘Objective: To explore the effectiveness of applying patient simulators combined with Internet Plus scenario simulation teaching models on intravenous (IV) infusion nursing education, and to provide scientific evidence for the implementation of advanced teaching models in future nursing education. Methods: Enrolled 60 nurses who took the IV infusion therapy training program in our hospital from January 2022 to December 2023 for research. 30 nurses who were trained in traditional teaching models from January to December 2022 were selected as the control group, and 30 nurses who were trained with simulation-based teaching models with methods including simulated patients, internet, online meetings which can be replayed and scenario simulation, etc. from January to December 2023 were selected as the experimental group. Evaluated the learning outcomes based on the Competency Inventory for Nursing Students (CINS), Problem-Solving Inventory (PSI), comprehensive learning ability, scientific research ability, and proficiency in the theoretical knowledge and practical skills of IV infusion therapy. Nursing quality, the incidence of IV infusion therapy complications and nurse satisfaction with different teaching models were also measured. Results: The scientific research ability, PSI scores, CINS scores, and comprehensive learning ability of the experimental group were better than those of the control group (P 0.05), and their assessment results of practical skills, nursing quality of IV infusion therapy during training, and satisfaction with teaching models were all better than those of the control group with statistical significance (P < 0.05). The incidence of IV infusion therapy complications in the experimental group was lower than that in the control group, indicating statistical significance (P < 0.05). Conclusions: Teaching models based on patient simulators combined with Internet Plus scenario simulation enable nursing students to learn more directly and practice at any time and in any place, and can improve their proficiency in IV infusion theoretical knowledge and skills (e.g. PICC catheterization), core competencies, problem-solving ability, comprehensive learning ability, scientific research ability and the ability to deal with complicated cases. Also, it helps provide high-quality nursing education, improve the nursing quality of IV therapy, reduce the incidence of related complications, and ensure the safety of patients with IV therapy.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
文摘Mobile internet technologies have transformed our daily lives,allowing us to connect,communi-cate,and access various services and applications anytime and anywhere.These technologies are set to play a significant role in the next generation of digital transformation,further increasing their impact by integrating with emerging technologies like 6G,quantum computing,and generative AI.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
文摘Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.
文摘Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.
文摘Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.
文摘The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.
基金supported by Anhui Province University Scientific Research Projects(2023AH040086)Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention(SYS2023B08).
文摘Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,the effectiveness and acceptability of IBIs for various mental health disorders continue to be subject to scholarly debate.We performed an umbrella review of meta-analyses(MAs),conducting literature searches in PubMed,Web of Science,Embase,Cochrane and Ovid Medline from their inception to 17 January 2023.A total of 87MAs,reporting on 1683 randomised controlled trials and 295589 patients,were included.The results indicated that IBIs had a moderate effect on anxiety disorder(standardised mean difference(SMD)=0.53,95%CI 0.44 to 0.62)and post-traumatic stress disorder(PTSD)(SMD=0.63,95%CI 0.38 to 0.89).In contrast,the efficacy on depression(SMD=0.45,95%CI 0.39 to 0.52),addiction(SMD=0.23,95%CI 0.16 to 0.31),suicidal ideation(SMD=0.23,95%CI 0.16 to 0.30),stress(SMD=0.41,95%CI 0.33 to 0.48)and obsessive-compulsive disorder(SMD=0.47,95%CI 0.22 to 0.73)was relatively small.However,no significant effects were observed for personality disorders(SMD=0.07,95%CI-0.13 to 0.26).Our findings suggest a significant association between IBIs and improved mental health outcomes,with particular effectiveness noted in treating anxiety disorders and PTSD.However,it is noteworthy that the effectiveness of IBIs was impacted by high dropout rates during treatment.Furthermore,our results indicated that guided IBIs proved to be more effective than unguided ones,playing a positive role in reducing dropout rates and enhancing patient adherence rates.
文摘Mobile and Internet network coverage plays an important role in digital transformation and the exploitation of new services. The evolution of mobile networks from the first generation (1G) to the 5th generation is still a long process. 2G networks have developed the messaging service, which complements the already operational voice service. 2G technology has rapidly progressed to the third generation (3G), incorporating multimedia data transmission techniques. It then progressed to fourth generation (4G) and LTE (Long Term Evolution), increasing the transmission speed to improve 3G. Currently, developed countries have already moved to 5G. In developing countries, including Burundi, a member of the East African Community (ECA) where more than 80% are connected to 2G technologies, 40% are connected to the 3G network and 25% to the 4G network and are not yet connected to the 5G network and then still a process. The objective of this article is to analyze the coverage of 2G, 3G and 4G networks in Burundi. This analysis will make it possible to identify possible deficits in order to reduce the digital divide between connected urban areas and remote rural areas. Furthermore, this analysis will draw the attention of decision-makers to the need to deploy networks and coverage to allow the population to access mobile and Internet services and thus enable the digitalization of the population. Finally, this article shows the level of coverage, the digital divide and an overview of the deployment of base stations (BTS) throughout the country to promote the transformation and digital inclusion of services.
文摘Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.
文摘The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
基金supported by the Natural Science Foundation of Jiangsu Province of China under grant no.BK20211284the Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps under grant no.2020DB005.
文摘As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers.
基金supported in part by the Natural Science Foundation of Henan Province(Grant No.202300410510)the Consulting Research Project of Chinese Academy of Engineering(Grant No.2020YNZH7)+3 种基金the Key Scientific Research Project of Colleges and Universities in Henan Province(Grant Nos.23A520043 and 23B520010)the International Science and Technology Cooperation Project of Henan Province(Grant No.232102521004)the National Key Research and Development Program of China(Grant No.2020YFB1005404)the Henan Provincial Science and Technology Research Project(Grant No.212102210100).
文摘The rapid evolution of artificial intelligence(AI)technologies has significantly propelled the advancement of the Internet of Vehicles(IoV).With AI support,represented by machine learning technology,vehicles gain the capability to make intelligent decisions.As a distributed learning paradigm,federated learning(FL)has emerged as a preferred solution in IoV.Compared to traditional centralized machine learning,FL reduces communication overhead and improves privacy protection.Despite these benefits,FL still faces some security and privacy concerns,such as poisoning attacks and inference attacks,prompting exploration into blockchain integration to enhance its security posture.This paper introduces a novel blockchain-enabled federated learning(BCFL)scheme with differential privacy(DP)tailored for IoV.In order to meet the performance demanding IoV environment,the proposed methodology integrates a consortium blockchain with Practical Byzantine Fault Tolerance(PBFT)consensus,which offers superior efficiency over the conventional public blockchains.In addition,the proposed approach utilizes the Differentially Private Stochastic Gradient Descent(DP-SGD)algorithm in the local training process of FL for enhanced privacy protection.Experiment results indicate that the integration of blockchain elevates the security level of FL in that the proposed approach effectively safeguards FL against poisoning attacks.On the other hand,the additional overhead associated with blockchain integration is also limited to a moderate level to meet the efficiency criteria of IoV.Furthermore,by incorporating DP,the proposed approach is shown to have the(ε-δ)privacy guarantee while maintaining an acceptable level of model accuracy.This enhancement effectively mitigates the threat of inference attacks on private information.