Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.Howev...Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.展开更多
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H...The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.展开更多
The appearance of pedestrians can vary greatly from image to image,and different pedestrians may look similar in a given image.Such similarities and variabilities in the appearance and clothing of individuals make the...The appearance of pedestrians can vary greatly from image to image,and different pedestrians may look similar in a given image.Such similarities and variabilities in the appearance and clothing of individuals make the task of pedestrian re-identification very challenging.Here,a pedestrian re-identification method based on the fusion of local features and gait energy image(GEI)features is proposed.In this method,the human body is divided into four regions according to joint points.The color and texture of each region of the human body are extracted as local features,and GEI features of the pedestrian gait are also obtained.These features are then fused with the local and GEI features of the person.Independent distance measure learning using the cross-view quadratic discriminant analysis(XQDA)method is used to obtain the similarity of the metric function of the image pairs,and the final similarity is acquired by weight matching.Evaluation of experimental results by cumulative matching characteristic(CMC)curves reveals that,after fusion of local and GEI features,the pedestrian re-identification effect is improved compared with existing methods and is notably better than the recognition rate of pedestrian re-identification with a single feature.展开更多
Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilo...Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa(75.0%), A. tortilis subsp. spirocarpa(75.0%) and A. raddiana(87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias.展开更多
An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wa...An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.展开更多
Shadow and variable illumination considerably influence the results of image understanding such as image segmentation, object tracking, and object recognition. The intrinsic image decomposition is to separate the refl...Shadow and variable illumination considerably influence the results of image understanding such as image segmentation, object tracking, and object recognition. The intrinsic image decomposition is to separate the reflectance and the illumination image from an observed image. The intrinsic image decomposition is very useful to remove shadows and then improve the performance of image understanding. In this paper, we present a new shadow removal method based on intrinsic image decomposition on a single color image using the Fisher Linear Discriminant (FLD). Under the assumptions-Lambertian surfaces, approximately Planckian lighting, and narrowband camera sensors, there exist an invariant image, which is 1-dimensional greyscale and independent of illuminant color and intensity. The Fisher Linear Discriminant is applied to create the invariant image. And further the shadows can be removed through the difference between invariant image and original color image. The experimental results on real data show good performance of this algorithm.展开更多
Cataracts are the leading cause of blindness worldwide. Current methods for discriminating cataractous lenses from healthy lenses of Sprague-Dawley rats during preclinical studies are based on either histopathological...Cataracts are the leading cause of blindness worldwide. Current methods for discriminating cataractous lenses from healthy lenses of Sprague-Dawley rats during preclinical studies are based on either histopathological or clinical assessments which are weakened by subjectivity. In this work, both cataractous and healthy lens tissues of Sprague-Dawley rats were studied using multispectral imaging technique in combination with multivariate analysis. Multispectral images were captured in transmission, reflection and scattering modes. In all, five spectral bands were found to be markers for discriminating cataractous lenses from healthy lenses;470 nm and 625 nm discriminated in reflection mode whereas 435 nm, 590 nm and 700 nm discriminated in transmission mode. With Fisher’s Linear discriminant analysis, the midpoints for classifying cataractous from healthy lenses were found to be 14.718 × 10−14 and 3.2374 × 10−14 for the two spectra bands in the reflection mode and the three spectral bands in the transmission mode respectively. Images in scattering mode did not show significant discrimination. These spectral bands in reflection and transmission modes may offer potential diagnostic markers for discriminating cataractous lenses from healthy lenses thereby promising multispectral imaging applications for characterizing cataractous and healthy lenses.展开更多
Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural...Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural and blurry outpainting results in most cases.To solve this issue,we propose a perceptual image outpainting method,which effectively takes the advantage of low-level feature fusion and multi-patch discriminator.Specifically,we first fuse the texture information in the low-level feature map of encoder,and simultaneously incorporate these aggregated features reusability with semantic(or structural)information of deep feature map such that we could utilizemore sophisticated texture information to generate more authentic outpainting images.Then we also introduce a multi-patch discriminator to enhance the generated texture,which effectively judges the generated image from the different level features and concurrently impels our network to produce more natural and clearer outpainting results.Moreover,we further introduce perceptual loss and style loss to effectively improve the texture and style of outpainting images.Compared with the existing methods,our method could produce finer outpainting results.Experimental results on Places2 and Paris StreetView datasets illustrated the effectiveness of our method for image outpainting.展开更多
Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as ...Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as the complexity of model structure severely hampers the application of the technique in practice.If a detection system can be established with a few bands and a relatively simple logic,it would be of great significance for application.This study established a method for identifying and discriminating three commonly occurring diseases and pests of wheat,i.e.,powdery mildew,yellow rust and aphid with a few specific bands.Through a comprehensive spectral analysis,only three bands at 570,680 and 750 nm were selected.A novel vegetation index namely Ratio Triangular Vegetation Index(RTVI)was developed for detecting anomalous areas on leaves.Then,the Support Vector Machine(SVM)method was applied to construct the discrimination model based on the spectral ratio analysis.The validating results suggested that the proposed method with only three spectral bands achieved a promising accuracy with the Overall Accuracy(OA)of 83%.With three bands from the hyperspectral imaging data,the three wheat diseases and pests were successfully detected and discriminated.A stepwise strategy including background removal,damage lesions recognition and stresses discrimination was proposed.The present work can provide a basis for the design of low cost and smart instruments for disease and pest detection.展开更多
基金supported by the Key R&D Program of Shaanxi Province,China(Grant Nos.2022GY-274,2023-YBSF-505)the National Natural Science Foundation of China(Grant No.62273273).
文摘Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.
基金funded by the National Key R&D Program of China(2020YFB1710100)the National Natural Science Foundation of China(Nos.52275337,52090042,51905188).
文摘The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
基金This research was funded by the Science and Technology Support Plan Project of Hebei Province(grant numbers 17210803D and 19273703D)the Science and Technology Spark Project of the Hebei Seismological Bureau(grant number DZ20180402056)+1 种基金the Education Department of Hebei Province(grant number QN2018095)the Polytechnic College of Hebei University of Science and Technology.
文摘The appearance of pedestrians can vary greatly from image to image,and different pedestrians may look similar in a given image.Such similarities and variabilities in the appearance and clothing of individuals make the task of pedestrian re-identification very challenging.Here,a pedestrian re-identification method based on the fusion of local features and gait energy image(GEI)features is proposed.In this method,the human body is divided into four regions according to joint points.The color and texture of each region of the human body are extracted as local features,and GEI features of the pedestrian gait are also obtained.These features are then fused with the local and GEI features of the person.Independent distance measure learning using the cross-view quadratic discriminant analysis(XQDA)method is used to obtain the similarity of the metric function of the image pairs,and the final similarity is acquired by weight matching.Evaluation of experimental results by cumulative matching characteristic(CMC)curves reveals that,after fusion of local and GEI features,the pedestrian re-identification effect is improved compared with existing methods and is notably better than the recognition rate of pedestrian re-identification with a single feature.
基金the Swedish International Development Cooperation Agency and Swedish Research Counsil for providing financial support through the Swedish Research Link Program
文摘Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa(75.0%), A. tortilis subsp. spirocarpa(75.0%) and A. raddiana(87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias.
文摘An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.
文摘Shadow and variable illumination considerably influence the results of image understanding such as image segmentation, object tracking, and object recognition. The intrinsic image decomposition is to separate the reflectance and the illumination image from an observed image. The intrinsic image decomposition is very useful to remove shadows and then improve the performance of image understanding. In this paper, we present a new shadow removal method based on intrinsic image decomposition on a single color image using the Fisher Linear Discriminant (FLD). Under the assumptions-Lambertian surfaces, approximately Planckian lighting, and narrowband camera sensors, there exist an invariant image, which is 1-dimensional greyscale and independent of illuminant color and intensity. The Fisher Linear Discriminant is applied to create the invariant image. And further the shadows can be removed through the difference between invariant image and original color image. The experimental results on real data show good performance of this algorithm.
文摘Cataracts are the leading cause of blindness worldwide. Current methods for discriminating cataractous lenses from healthy lenses of Sprague-Dawley rats during preclinical studies are based on either histopathological or clinical assessments which are weakened by subjectivity. In this work, both cataractous and healthy lens tissues of Sprague-Dawley rats were studied using multispectral imaging technique in combination with multivariate analysis. Multispectral images were captured in transmission, reflection and scattering modes. In all, five spectral bands were found to be markers for discriminating cataractous lenses from healthy lenses;470 nm and 625 nm discriminated in reflection mode whereas 435 nm, 590 nm and 700 nm discriminated in transmission mode. With Fisher’s Linear discriminant analysis, the midpoints for classifying cataractous from healthy lenses were found to be 14.718 × 10−14 and 3.2374 × 10−14 for the two spectra bands in the reflection mode and the three spectral bands in the transmission mode respectively. Images in scattering mode did not show significant discrimination. These spectral bands in reflection and transmission modes may offer potential diagnostic markers for discriminating cataractous lenses from healthy lenses thereby promising multispectral imaging applications for characterizing cataractous and healthy lenses.
基金This work was supported by the Sichuan Science and Technology program(2019JDJQ0002,2019YFG0496,2021016,2020JDTD0020)partially supported by National Science Foundation of China 42075142.
文摘Recently,deep learning-based image outpainting has made greatly notable improvements in computer vision field.However,due to the lack of fully extracting image information,the existing methods often generate unnatural and blurry outpainting results in most cases.To solve this issue,we propose a perceptual image outpainting method,which effectively takes the advantage of low-level feature fusion and multi-patch discriminator.Specifically,we first fuse the texture information in the low-level feature map of encoder,and simultaneously incorporate these aggregated features reusability with semantic(or structural)information of deep feature map such that we could utilizemore sophisticated texture information to generate more authentic outpainting images.Then we also introduce a multi-patch discriminator to enhance the generated texture,which effectively judges the generated image from the different level features and concurrently impels our network to produce more natural and clearer outpainting results.Moreover,we further introduce perceptual loss and style loss to effectively improve the texture and style of outpainting images.Compared with the existing methods,our method could produce finer outpainting results.Experimental results on Places2 and Paris StreetView datasets illustrated the effectiveness of our method for image outpainting.
基金subsidized by National Natural Science Foundation of China(Grant No.42071420)External Cooperation Program of the Chinese Academy of Sciences(183611KYSB20200080)+1 种基金National Key R&D Program of China(2019YFE0125300)Beijing Nova Program of Science and Technology(Z191100001119089).
文摘Hyperspectral imaging technique is known as a promising non-destructive way for detecting plants diseases and pests.In most previous studies,the utilization of the whole spectrum or a large number of bands as well as the complexity of model structure severely hampers the application of the technique in practice.If a detection system can be established with a few bands and a relatively simple logic,it would be of great significance for application.This study established a method for identifying and discriminating three commonly occurring diseases and pests of wheat,i.e.,powdery mildew,yellow rust and aphid with a few specific bands.Through a comprehensive spectral analysis,only three bands at 570,680 and 750 nm were selected.A novel vegetation index namely Ratio Triangular Vegetation Index(RTVI)was developed for detecting anomalous areas on leaves.Then,the Support Vector Machine(SVM)method was applied to construct the discrimination model based on the spectral ratio analysis.The validating results suggested that the proposed method with only three spectral bands achieved a promising accuracy with the Overall Accuracy(OA)of 83%.With three bands from the hyperspectral imaging data,the three wheat diseases and pests were successfully detected and discriminated.A stepwise strategy including background removal,damage lesions recognition and stresses discrimination was proposed.The present work can provide a basis for the design of low cost and smart instruments for disease and pest detection.